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Abstract: Agricultural price fluctuations create significant challenges for farmers and policymakers, making accurate 

price forecasting vital for agro-economic stability. This study introduces an Explainable Artificial Intelligence (XAI)-

driven Random Forest model for forecasting weekly modal prices of agricultural commodities in Bangladesh and India. 

The model utilizes the Agricultural Commodity Price Forecasting Dataset, containing 23,093 weekly price records across 

Indian and Bangladeshi markets. Following rigorous preprocessing and feature engineering, multiple models were 

evaluated, among which the Random Forest achieved superior performance (RMSE = 397.07, MAE = 100.96, and R² = 

0.9931), outperforming XGBoost, CatBoost, MLP, and LSTM. Integration of SHapley Additive exPlanations (SHAP) 

provides interpretability by identifying key influential factors such as Max Price, Min Price, Market, and Commodity Type. 

The proposed XAI-based Random Forest framework ensures both high predictive accuracy and transparency, offering 

valuable insights for data-driven decision-making in agricultural market forecasting. 

Keywords: Agro-Economics, Price Forecasting, Commodity Prices, Explainable AI. 

 

I. INTRODUCTION 
Agricultural markets in South Asia, particularly in countries like Bangladesh and India, play a critical role in 

ensuring food security, stabilizing the economy, and supporting the livelihoods of millions of smallholder farmers [1, 2]. 

Price volatility of agricultural commodities, driven by seasonal variations, regional demand-supply imbalances, and market 

inefficiencies, poses significant challenges for both policymakers and farmers. Accurate forecasting of commodity prices 

is therefore essential for strategic planning, risk mitigation, and informed decision-making in the agro-economic sector [3]. 

 

In recent years, machine learning (ML) models have shown remarkable capability in predicting complex patterns 

in agricultural datasets, capturing non-linear relationships among price, market, and temporal variables [4]. Models such 

as XGBoost, CatBoost, Long Short-Term Memory (LSTM), and Multi-Layer Perceptrons (MLP) have been widely applied 

for price prediction tasks. However, a major limitation of these approaches is their black-box nature, which obscures the 

underlying reasoning behind predictions [5]. The lack of interpretability restricts trust and limits practical adoption, 

especially in agricultural policymaking, where stakeholders require transparent, explainable insights to make informed 

decisions. 

 

Explainable Artificial Intelligence (XAI) has emerged as a promising solution to address this challenge by 

providing interpretable and transparent explanations for complex model predictions [6]. Techniques such as SHapley 

Additive exPlanations (SHAP) [7], enable the identification of feature importance and the contribution of individual 

predictors to the model output. Incorporating XAI into agricultural price forecasting allows stakeholders to understand the 

influence of factors such as market location, commodity type, seasonal effects, and price trends on predicted prices. 

 

This study proposes a Random Forest–based predictive framework integrated with XAI to forecast weekly modal 

prices of agricultural commodities in India and Bangladesh. The proposed approach not only achieves high predictive 

accuracy but also ensures interpretability, bridging the gap between performance and transparency. By integrating XAI 
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into the Random Forest model, this research provides actionable insights for farmers, traders, and policymakers, enabling 

data-driven decision-making and enhancing trust in machine learning applications in agricultural markets. 

 

The primary contributions of this study are as follows: 

• Development of a robust Random Forest model for forecasting agricultural commodity prices. 

• Integration of XAI through SHAP to provide both global and local interpretability of predictions. 

• Analysis of feature importance to identify key factors influencing commodity price trends in India and 

Bangladesh. 

• Demonstration of the effectiveness of explainable machine learning in improving transparency and usability of 

predictive models for agro-economic applications. 

 

II. Related Works 

Recent advances in Artificial Intelligence (AI) and Machine Learning (ML) have enhanced the accuracy of 

agricultural commodity price forecasting, providing adaptive alternatives to traditional econometric models like ARIMA 

and VAR. However, interpretability, generalization, and adaptability across regions remain major challenges. 

 

A study in [8], applied Shapley Additive exPlanations (SHAP) to interpret global food price fluctuations, 

integrating explainability with prediction for greater transparency. Its limitation lies in focusing on global data, lacking 

regional relevance for South Asia. 

 

The work in [9], used ensemble ML algorithms for price forecasting, outperforming linear and time-series models 

while aligning with the UN’s Zero Hunger goal. However, it lacked interpretability, reducing usability for policymakers & 

farmers. The review in [10], summarized ML approaches, emphasizing preprocessing, feature selection, and ensemble 

modeling. Despite strong predictive insights, it lacked explainable frameworks to interpret model behavior. In [11], a hybrid 

VMD–EEMD–LSTM model effectively captured multi-scale temporal patterns, achieving high accuracy and robustness 

against noise. Yet, its deep structure increased computational cost and reduced interpretability. 

 

The study in [12], proposed an explainable deep learning model that balanced accuracy and transparency but 

required heavy computational resources and lacked validation on developing-country data. 

 

A regional study in [13], employed deep learning for predicting Indian crop prices, demonstrating adaptability to 

local datasets but facing issues with overfitting and the lack of explainable mechanisms. 

 

Lastly [14], explored AI–XAI integration in precision agriculture, showing that interpretability enhances trust and 

performance. However, it focused on crop yield rather than price forecasting. 

 

In summary, prior studies highlight ML and DL models’ strong forecasting potential but reveal gaps in 

transparency, computational efficiency, and regional adaptability [15]. Building upon these findings, the present work 

proposes an XAI-driven Random Forest framework with SHAP analysis to achieve high accuracy, interpretability, and 

regional applicability for Bangladesh and India. 

 

III. METHODOLOGY 
This study proposes a framework for forecasting agricultural commodity prices using a Random Forest model 

with Explainable AI (XAI). The methodology covers dataset description, preprocessing, feature engineering, model 

training, and explainability analysis, ensuring both accuracy and interpretability. The overall workflow is shown in Fig. 1, 

illustrating the sequential steps from data collection to model evaluation and SHAP-based insights. 
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Fig. 1: Workflow Diagram 

 

A. Dataset Description 

The study uses the Agricultural Commodity Price Forecasting Dataset [16], which contains weekly price records 

of commodities. The raw dataset has 23,093 rows and 10 columns, including State, District, Market, Commodity, Variety, 

Grade, Arrival_Date, Min Price, Max Price, and Modal Price. 

 

Modal Price is the target variable. After preprocessing and feature engineering, the dataset contains 22,124 rows 

and 19 features (17 predictors: 11 numerical, 6 categorical). Missing values were imputed, duplicates removed, numeric 

features scaled, and categorical variables encoded. 

 

B. Exploratory Data Analysis (EDA) 

EDA was conducted to understand the characteristics, trends, and variability of commodity prices, guiding feature 

engineering. 

 

Table 1 summarizes key statistics of numeric features (Modal Price, Max Price, Min Price, Price Spread), 

showing variability and skewness. 

 

Table I: Descriptive Statistics Table 

Statistic Modal Price Max Price Min Price Price_Spread 

Count 23,093 23,093 23,093 23,093 

Mean 4,602.92 4,976.03 4,187.08 788.96 

Std 5,843.82 6,277.31 5,472.78 1,944.63 

Min 0.83 0.00 0.00 -7,000.00 

25th % 1,955.00 2,000.00 1,750.00 100.00 

Median 3,000.00 3,400.00 2,725.00 270.00 

75th % 5,500.00 6,000.00 5,000.00 850.00 

Max 225,500.00 227,500.00 223,500.00 103,000.00 

Skewness 8.96 8.44 9.53 15.50 

Kurtosis 170.60 145.36 198.36 524.79 

 

Fig. 2 shows the distribution of modal prices with a histogram and KDE plot, revealing a highly right-skewed 

pattern where most prices are below INR 25,000 and peak under INR 10,000, with a long tail up to INR 225,000. This 

distribution reflects typical commodity markets with few high-value outliers and requires careful handling, such as 

logarithmic transformation. Fig. 3 depicts the weekly average price trend from 2023-07-27 to 2023-08-02, where prices 

rise from INR 4,270 to INR 4,700, drop to INR 3,600, and recover to nearly INR 5,400, highlighting non-stationarity and 

short-term volatility. Fig. 4 presents the Pearson correlation heatmap of Modal, Max, and Min Prices, showing strong 

correlations of 0.99, 0.98, and 0.95, respectively, indicating multicollinearity and suggesting that Modal Price alone can 

serve as the target or that dimensionality reduction may be applied. 
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Fig. 2: Distribution of Modal Prices 

 

 
Fig. 3: Weekly Average Price Trend 

 

 
Fig. 4: Price Correlation Heatmap 
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C. Data Preprocessing 

a) Handling Missing Values: Median for numeric columns, mode for categorical columns. 

b) Duplicate Removal: Eliminated duplicate records. 

c) Date Conversion and Sorting: Arrival_Date converted to datetime and sorted by Commodity and Arrival_Date. 

d) Normalization: StandardScaler applied to numeric features. 

e) Categorical Encoding: Label Encoding applied to categorical columns (State, District, Market, Commodity, 

Variety, Grade). 

 

D. Feature Engineering 

Nine additional features were generated to capture volatility, temporal trends, and seasonality: 

 

Table II: Additional Features 

Feature Type Description 

Price_Range Numeric Max Price – Min Price 

Avg_Price Numeric (Max Price + Min Price)/2 

Year Numeric Extracted from Arrival_Date 

Month Numeric Extracted from Arrival_Date 

Day Numeric Extracted from Arrival_Date 

DayOfWeek Numeric Day of the week (0–6, Mon–Sun) 

IsWeekend Binary 1 if Saturday/Sunday, else 0 

Rolling_Mean_Price Numeric 7-day rolling mean of Modal Price 

Log_Modal_Price Numeric Natural logarithm of Modal Price 

 

E. Model Development 

The proposed framework implements five supervised learning models: Random Forest (RF), Multi-Layer 

Perceptron (MLP), Long Short-Term Memory (LSTM), XGBoost, and CatBoost for predicting weekly modal prices of 

agricultural commodities. The dataset was divided into 80% training and 20% testing, with numerical features scaled for 

neural network models and categorical features label-encoded to ensure compatibility across tree-based and neural models. 

 

The Random Forest Regressor was selected as the proposed model due to its robustness, interpretability, and 

ability to handle multicollinearity. XGBoost and CatBoost were tuned as gradient-boosted decision tree models, while 

MLP and LSTM were designed to capture nonlinear and temporal dependencies, respectively. Early stopping was applied 

to neural network models to prevent overfitting. 

 

Model performance was evaluated using Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R² 

score to assess predictive accuracy and reliability. The hyperparameters, architectural details, and evaluation metrics of all 

models are summarized in Table III, providing a clear overview of the model construction strategy used in this study. 

 

Table III: Model Construction Summary 

Model Parameters Key Features 

Random Forest (RF) 500 trees, max depth 12, MSE criterion, random 

state 42 

Robust, interpretable, handles 

multicollinearity 

Multi-Layer 

Perceptron (MLP) 

2 hidden layers (128, 64 neurons), ReLU 

activation, linear output 

Captures nonlinear relationships, early 

stopping applied 

Long Short-Term 

Memory (LSTM) 

1 LSTM layer (64 units), linear output Captures temporal dependencies, early 

stopping applied 

XGBoost 500 estimators, learning rate 0.05, max depth 6, 

subsample 0.8, colsample_bytree 0.8 

Gradient-boosted decision trees, robust to 

overfitting 

CatBoost 500 iterations, learning rate 0.05, max depth 6 Gradient boosting with categorical 

feature handling, low preprocessing 

 

F. Explainable AI (XAI) Integration 

To enhance interpretability, Explainable AI (XAI) techniques were applied to tree-based models, providing both 

global and local insights into predictions. While most machine learning models act as black boxes [5], XAI enables 

understanding of feature contributions and decision-making processes, which is crucial for actionable insights in agro-

economic forecasting. 
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SHAP is grounded in cooperative game theory and attributes the prediction of a model f(x) to a baseline 

expectation value and additive feature contributions, expressed as a formula [7] as, 

(1a) 

Each feature’s contribution, represented by the Shapley value ϕi, is defined as, 

(1b) 

 

Global explainability was achieved using SHAP summary plots and feature importance bar plots, highlighting the 

most influential variables such as commodity type, price spread, and recent price trends. Local explainability was provided 

through SHAP waterfall plots, illustrating how individual features contribute to specific predictions and supporting detailed 

analysis for stakeholders. 

 

By integrating XAI into tree-based models, the methodology ensures both high predictive accuracy and 

transparent interpretability, bridging the gap between model performance and actionable insights in commodity price 

forecasting. 

 

IV. RESULTS 
The predictive performance of all developed models was assessed using three standard evaluation metrics: Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R²). These metrics jointly 

measure model accuracy, consistency, and explanatory strength. The comparative results are summarized in Table IV. 

 

Table I: Comparative Results of All Models 

Model RMSE ↓ MAE ↓ R² ↑ 

XGBoost  495.12 127.34 0.9892 

Random Forest 397.07 100.96 0.9931 

CatBoost 683.60 158.47 0.9795 

MLP 773.51 501.62 0.9737 

LSTM 591.14 198.70 0.9847 

 

Among all models, the Random Forest achieved the highest predictive performance, recording the lowest RMSE 

and MAE values, as well as the highest R² score, indicating its superior generalization capability and stability. XGBoost 

and CatBoost also delivered competitive results due to their efficient boosting algorithms. At the same time, MLP and 

LSTM captured nonlinear and temporal dynamics but showed slightly higher error levels due to sensitivity to data 

irregularities. 

 

Fig. 5-Fig. 6 presents the Actual vs. Predicted plots, illustrating strong alignment between observed and predicted 

prices, particularly for Random Forest, with minimal deviation. 

 

 
Fig. 5: Actual vs Predicted (Random Forest) 
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Fig. 6: Actual vs Predicted (CatBoost, XGBoost, LSTM, MLP) 

 

The Residual Plots (Fig.7 – Fig. 8) show that Random Forest residuals (Fig. 7) are symmetrically distributed 

around zero, reflecting reduced bias and robust model calibration. 

 

 
Fig. 7: Residual Plot (Random Forest) 
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Fig. 8: Residual Plot (CatBoost, XGBoost, LSTM, MLP) 

 

Further, Fig. 9–Fig. 11 display the comparative visualization of R², MAE, and RMSE across all models, 

reaffirming Random Forest’s consistent superiority in predictive accuracy. 

 

 
Fig. 9: Comparison of R² for All Models 
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Fig. 10: Comparison of MAE 

 

 
Fig. 11: Comparison of RMSE 

 

These findings establish Random Forest as the most effective model for weekly agricultural price forecasting, 

striking a balance between accuracy, reliability, and interpretability for integration with Explainable AI (XAI). 

 

V. Explainability with Shap 

To enhance interpretability and transparency of the forecasting framework, SHapley Additive exPlanations 

(SHAP) were applied to all tree-based models—Random Forest, XGBoost, and CatBoost. SHAP provides both global and 

local explanations by quantifying the contribution of each feature to the model’s output, thereby transforming the predictive 

models from black-box systems into interpretable analytical tools. 

 

A. Global Explainability 

Global interpretability was achieved using SHAP summary and SHAP bar plots, revealing the overall influence 

and relative importance of input features across all model predictions. The SHAP Summary Plots (Fig. 12 for Random 

Forest, Fig. 14 for XGBoost, and Fig. 16 for CatBoost) illustrate each feature's contribution to the output, showing both 

magnitude and direction of impact. The vertical axis lists features ranked by global importance, while the horizontal axis 

represents SHAP values, with red indicating high and blue low feature values. Positive SHAP values increase predictions, 

and negative values decrease them. 

 

Across all models, Max Price and Min Price are the dominant predictors with the largest SHAP ranges, while 

secondary features like Rolling_3, Rolling_5, and Price_Spread show smaller impacts. CatBoost exhibits tighter clustering 

for lower-ranked features, indicating a more focused influence distribution. 
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The SHAP Bar Plots (Fig. 13 for Random Forest, Fig. 15 for XGBoost, and Fig. 17 for CatBoost) quantify feature 

importance by averaging absolute SHAP values. The top five feature rankings are: 

• Random Forest: Max Price, Min Price, Rolling_3, Rolling_5, Modal_Price_Lag_1 

• XGBoost: Max Price, Min Price, Rolling_5, Price_Spread, Market 

• CatBoost: Max Price, Min Price, Modal_Price_Lag_2, Modal_Price_Lag_3, Modal_Price_Lag_1 

 

 
Fig. 12: SHAP Summary Plot (RF) 

 

 
Fig. 13: SHAP bar Plot (RF) 
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Fig. 14: SHAP Summary Plot (XGBoost) 

 

 
Fig. 15: Bar Plot (CatBoost) 
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Fig. 16: SHAP Summary Plot (CatBoost) 

 

 
Fig. 17: SHAP bar Plot 



 

Munshaibur Rahman Mahin; South Asian Res J Agri Fish; Vol-7, Iss-6 (Nov-Dec, 2025): 88-102 

© South Asian Research Publication, Bangladesh            Journal Homepage: www.sarpublication.com 100 

 

B. Local Explainability 

Fig. 17– Fig. 19 present the SHAP Waterfall Plots for the CatBoost, Random Forest, and XGBoost models, 

illustrating local interpretability for a representative data instance (Sample 0). Each plot explains how individual feature 

values contribute to the final prediction, showing the transition from the model’s base value E[f(x)] to the predicted output 

f(x) through cumulative SHAP contributions. 

 

Red bars denote features that increase the prediction, while blue bars represent those that decrease it, with bar 

lengths and numeric values indicating the magnitude of each contribution. Across all three models, Max Price and Min 

Price consistently exhibit the strongest negative SHAP values, significantly reducing the predicted price. For instance, in 

XGBoost these are approximately −977.24 and −515.59, in CatBoost −658.86 and −532.37, and in Random Forest −879.81 

and −582.89, respectively—corresponding to relatively high feature values (≈−0.284 and ≈−0.253). 

 

While Max Price and Min Price dominate across models, secondary features vary slightly: XGBoost shows small 

negative effects from Rolling_5, Modal_Price_Lag_1, and Price_Spread; CatBoost displays a balanced effect among lag 

variables and categorical features like State (which contributes +51.56); and Random Forest emphasizes the two main price 

features with minor influence from others. 

 

In summary, the SHAP Waterfall analysis reveals consistent key drivers (Max Price and Min Price) across models, 

but differing secondary feature behaviors, reflecting each model’s unique reasoning. These insights improve model 

transparency, interpretability, and trust in agro-economic forecasting. 

 

 
Fig. 18: SHAP Waterfall plot (Random Forest) 

 

 
Fig. 19: Waterfall Plot (XGBoost) 
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Fig. 20: Waterfall Plot (CatBoost) 

 

VI. CONCLUSION & FUTURE WORKS 
This study proposed an Explainable Artificial Intelligence (XAI) driven framework for forecasting agricultural 

commodity price trends in Bangladesh and India. The Random Forest–based model achieved superior predictive 

performance (RMSE = 397.07, MAE = 100.96, R² = 0.9931) compared with XGBoost, CatBoost, MLP, and LSTM models. 

Through SHapley Additive exPlanations (SHAP), the framework ensured both global and local interpretability, identifying 

key drivers such as maximum price, minimum price, market, and commodity type. By integrating explainability with high 

accuracy, the proposed system enhances transparency and supports data-driven decision-making in agricultural policy and 

market management. 

 

The study highlights the potential of explainable machine learning to bridge the gap between predictive analytics 

and actionable agro-economic insights. However, its reliance on a single dataset and static modeling limits generalizability. 

Future research will extend the framework to multi-seasonal and multi-regional datasets, incorporating exogenous variables 

such as weather and policy indicators. Moreover, hybrid ensembles and advanced XAI techniques (e.g., LIME, 

counterfactuals, attention-based models) will be explored, along with temporal deep learning architectures like Explainable 

LSTMs and Temporal Fusion Transformers. The ultimate goal is to develop a fully explainable, real-time forecasting 

system for sustainable agricultural market intelligence. 
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