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Abstract: Agricultural price fluctuations create significant challenges for farmers and policymakers, making accurate
price forecasting vital for agro-economic stability. This study introduces an Explainable Artificial Intelligence (XAl)-
driven Random Forest model for forecasting weekly modal prices of agricultural commodities in Bangladesh and India.
The model utilizes the Agricultural Commaodity Price Forecasting Dataset, containing 23,093 weekly price records across
Indian and Bangladeshi markets. Following rigorous preprocessing and feature engineering, multiple models were
evaluated, among which the Random Forest achieved superior performance (RMSE = 397.07, MAE = 100.96, and R2 =
0.9931), outperforming XGBoost, CatBoost, MLP, and LSTM. Integration of SHapley Additive exPlanations (SHAP)
provides interpretability by identifying key influential factors such as Max Price, Min Price, Market, and Commaodity Type.
The proposed XAl-based Random Forest framework ensures both high predictive accuracy and transparency, offering
valuable insights for data-driven decision-making in agricultural market forecasting.
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I. INTRODUCTION

Agricultural markets in South Asia, particularly in countries like Bangladesh and India, play a critical role in
ensuring food security, stabilizing the economy, and supporting the livelihoods of millions of smallholder farmers [1, 2].
Price volatility of agricultural commodities, driven by seasonal variations, regional demand-supply imbalances, and market
inefficiencies, poses significant challenges for both policymakers and farmers. Accurate forecasting of commaodity prices
is therefore essential for strategic planning, risk mitigation, and informed decision-making in the agro-economic sector [3].

In recent years, machine learning (ML) models have shown remarkable capability in predicting complex patterns
in agricultural datasets, capturing non-linear relationships among price, market, and temporal variables [4]. Models such
as XGBoost, CatBoost, Long Short-Term Memory (LSTM), and Multi-Layer Perceptrons (MLP) have been widely applied
for price prediction tasks. However, a major limitation of these approaches is their black-box nature, which obscures the
underlying reasoning behind predictions [5]. The lack of interpretability restricts trust and limits practical adoption,
especially in agricultural policymaking, where stakeholders require transparent, explainable insights to make informed
decisions.

Explainable Artificial Intelligence (XAI) has emerged as a promising solution to address this challenge by
providing interpretable and transparent explanations for complex model predictions [6]. Techniques such as SHapley
Additive exPlanations (SHAP) [7], enable the identification of feature importance and the contribution of individual
predictors to the model output. Incorporating XAl into agricultural price forecasting allows stakeholders to understand the
influence of factors such as market location, commodity type, seasonal effects, and price trends on predicted prices.

This study proposes a Random Forest—based predictive framework integrated with XAl to forecast weekly modal
prices of agricultural commodities in India and Bangladesh. The proposed approach not only achieves high predictive
accuracy but also ensures interpretability, bridging the gap between performance and transparency. By integrating XAl
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into the Random Forest model, this research provides actionable insights for farmers, traders, and policymakers, enabling
data-driven decision-making and enhancing trust in machine learning applications in agricultural markets.

The primary contributions of this study are as follows:
e Development of a robust Random Forest model for forecasting agricultural commaodity prices.
e Integration of XAl through SHAP to provide both global and local interpretability of predictions.
e Analysis of feature importance to identify key factors influencing commodity price trends in India and
Bangladesh.
e Demonstration of the effectiveness of explainable machine learning in improving transparency and usability of
predictive models for agro-economic applications.

I1. Related Works

Recent advances in Artificial Intelligence (Al) and Machine Learning (ML) have enhanced the accuracy of
agricultural commodity price forecasting, providing adaptive alternatives to traditional econometric models like ARIMA
and VAR. However, interpretability, generalization, and adaptability across regions remain major challenges.

A study in [8], applied Shapley Additive exPlanations (SHAP) to interpret global food price fluctuations,
integrating explainability with prediction for greater transparency. Its limitation lies in focusing on global data, lacking
regional relevance for South Asia.

The work in [9], used ensemble ML algorithms for price forecasting, outperforming linear and time-series models
while aligning with the UN’s Zero Hunger goal. However, it lacked interpretability, reducing usability for policymakers &
farmers. The review in [10], summarized ML approaches, emphasizing preprocessing, feature selection, and ensemble
modeling. Despite strong predictive insights, it lacked explainable frameworks to interpret model behavior. In [11], a hybrid
VMD-EEMD-LSTM model effectively captured multi-scale temporal patterns, achieving high accuracy and robustness
against noise. Yet, its deep structure increased computational cost and reduced interpretability.

The study in [12], proposed an explainable deep learning model that balanced accuracy and transparency but
required heavy computational resources and lacked validation on developing-country data.

A regional study in [13], employed deep learning for predicting Indian crop prices, demonstrating adaptability to
local datasets but facing issues with overfitting and the lack of explainable mechanisms.

Lastly [14], explored AlI-XAl integration in precision agriculture, showing that interpretability enhances trust and
performance. However, it focused on crop yield rather than price forecasting.

In summary, prior studies highlight ML and DL models’ strong forecasting potential but reveal gaps in
transparency, computational efficiency, and regional adaptability [15]. Building upon these findings, the present work
proposes an XAl-driven Random Forest framework with SHAP analysis to achieve high accuracy, interpretability, and
regional applicability for Bangladesh and India.

IHl. METHODOLOGY

This study proposes a framework for forecasting agricultural commodity prices using a Random Forest model
with Explainable Al (XAI). The methodology covers dataset description, preprocessing, feature engineering, model
training, and explainability analysis, ensuring both accuracy and interpretability. The overall workflow is shown in Fig. 1,
illustrating the sequential steps from data collection to model evaluation and SHAP-based insights.
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Fig. 1: Workflow Diagram

A. Dataset Description

The study uses the Agricultural Commaodity Price Forecasting Dataset [16], which contains weekly price records
of commodities. The raw dataset has 23,093 rows and 10 columns, including State, District, Market, Commodity, Variety,
Grade, Arrival_Date, Min Price, Max Price, and Modal Price.

Modal Price is the target variable. After preprocessing and feature engineering, the dataset contains 22,124 rows
and 19 features (17 predictors: 11 numerical, 6 categorical). Missing values were imputed, duplicates removed, numeric
features scaled, and categorical variables encoded.

B. Exploratory Data Analysis (EDA)
EDA was conducted to understand the characteristics, trends, and variability of commodity prices, guiding feature
engineering.

Table 1 summarizes key statistics of numeric features (Modal Price, Max Price, Min Price, Price Spread),
showing variability and skewness.

Table I: Descriptive Statistics Table

Statistic | Modal Price | Max Price | Min Price | Price Spread
Count 23,093 23,093 23,093 23,093
Mean 4,602.92 4,976.03 4,187.08 788.96

Std 5,843.82 6,277.31 5,472.78 1,944.63
Min 0.83 0.00 0.00 -7,000.00
25th % 1,955.00 2,000.00 1,750.00 100.00
Median 3,000.00 3,400.00 2,725.00 270.00
75th % 5,500.00 6,000.00 5,000.00 850.00
Max 225,500.00 | 227,500.00 | 223,500.00 | 103,000.00
Skewness | 8.96 8.44 9.53 15.50
Kurtosis | 170.60 145.36 198.36 524.79

Fig. 2 shows the distribution of modal prices with a histogram and KDE plot, revealing a highly right-skewed
pattern where most prices are below INR 25,000 and peak under INR 10,000, with a long tail up to INR 225,000. This
distribution reflects typical commodity markets with few high-value outliers and requires careful handling, such as
logarithmic transformation. Fig. 3 depicts the weekly average price trend from 2023-07-27 to 2023-08-02, where prices
rise from INR 4,270 to INR 4,700, drop to INR 3,600, and recover to nearly INR 5,400, highlighting non-stationarity and
short-term volatility. Fig. 4 presents the Pearson correlation heatmap of Modal, Max, and Min Prices, showing strong
correlations of 0.99, 0.98, and 0.95, respectively, indicating multicollinearity and suggesting that Modal Price alone can
serve as the target or that dimensionality reduction may be applied.
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C. Data Preprocessing

a) Handling Missing Values: Median for numeric columns, mode for categorical columns.

b) Duplicate Removal: Eliminated duplicate records.

c) Date Conversion and Sorting: Arrival_Date converted to datetime and sorted by Commaodity and Arrival_Date.

d) Normalization: StandardScaler applied to numeric features.

e) Categorical Encoding: Label Encoding applied to categorical columns (State, District, Market, Commaodity,
Variety, Grade).

D. Feature Engineering
Nine additional features were generated to capture volatility, temporal trends, and seasonality:

Table I1: Additional Features

Feature Type Description

Price_Range Numeric | Max Price — Min Price

Avg_Price Numeric | (Max Price + Min Price)/2

Year Numeric | Extracted from Arrival Date
Month Numeric | Extracted from Arrival Date

Day Numeric | Extracted from Arrival_Date
DayOfWeek Numeric | Day of the week (0-6, Mon—Sun)
IsWeekend Binary 1 if Saturday/Sunday, else 0
Rolling_Mean Price | Numeric | 7-day rolling mean of Modal Price
Log_Modal_Price Numeric | Natural logarithm of Modal Price

E. Model Development

The proposed framework implements five supervised learning models: Random Forest (RF), Multi-Layer
Perceptron (MLP), Long Short-Term Memory (LSTM), XGBoost, and CatBoost for predicting weekly modal prices of
agricultural commodities. The dataset was divided into 80% training and 20% testing, with numerical features scaled for
neural network models and categorical features label-encoded to ensure compatibility across tree-based and neural models.

The Random Forest Regressor was selected as the proposed model due to its robustness, interpretability, and
ability to handle multicollinearity. XGBoost and CatBoost were tuned as gradient-boosted decision tree models, while
MLP and LSTM were designed to capture nonlinear and temporal dependencies, respectively. Early stopping was applied
to neural network models to prevent overfitting.

Model performance was evaluated using Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R2
score to assess predictive accuracy and reliability. The hyperparameters, architectural details, and evaluation metrics of all
models are summarized in Table I, providing a clear overview of the model construction strategy used in this study.

Table 111: Model Construction Summary

Model Parameters Key Features
Random Forest (RF) 500 trees, max depth 12, MSE criterion, random | Robust, interpretable, handles
state 42 multicollinearity
Multi-Layer 2 hidden layers (128, 64 neurons), ReLU Captures nonlinear relationships, early
Perceptron (MLP) activation, linear output stopping applied
Long Short-Term 1 LSTM layer (64 units), linear output Captures temporal dependencies, early
Memory (LSTM) stopping applied
XGBoost 500 estimators, learning rate 0.05, max depth 6, | Gradient-boosted decision trees, robust to
subsample 0.8, colsample bytree 0.8 overfitting
CatBoost 500 iterations, learning rate 0.05, max depth 6 Gradient boosting with categorical
feature handling, low preprocessing

F. Explainable Al (XAl) Integration

To enhance interpretability, Explainable Al (XAl) techniques were applied to tree-based models, providing both
global and local insights into predictions. While most machine learning models act as black boxes [5], XAl enables
understanding of feature contributions and decision-making processes, which is crucial for actionable insights in agro-
economic forecasting.
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SHAP is grounded in cooperative game theory and attributes the prediction of a model f(x) to a baseline
expectation value and additive feature contributions, expressed as a formula [7] as,

M
f(w)_¢(l+2¢i
i=1 (1a)
Each feature’s contribution, represented by the Shapley value ¢i, is defined as,

si= 3 BEMEBIZD o i) - fes)),
SCF\{i} -

(1b)

Global explainability was achieved using SHAP summary plots and feature importance bar plots, highlighting the
most influential variables such as commodity type, price spread, and recent price trends. Local explainability was provided
through SHAP waterfall plots, illustrating how individual features contribute to specific predictions and supporting detailed
analysis for stakeholders.

By integrating XAl into tree-based models, the methodology ensures both high predictive accuracy and
transparent interpretability, bridging the gap between model performance and actionable insights in commodity price
forecasting.

IV. RESULTS

The predictive performance of all developed models was assessed using three standard evaluation metrics: Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R2). These metrics jointly
measure model accuracy, consistency, and explanatory strength. The comparative results are summarized in Table IV.

Table I: Comparative Results of All Models

Model RMSE | | MAE | | R?t

XGBoost 495.12 127.34 | 0.9892
Random Forest | 397.07 100.96 | 0.9931
CatBoost 683.60 158.47 | 0.9795
MLP 773.51 501.62 | 0.9737
LSTM 591.14 198.70 | 0.9847

Among all models, the Random Forest achieved the highest predictive performance, recording the lowest RMSE
and MAE values, as well as the highest R2 score, indicating its superior generalization capability and stability. XGBoost
and CatBoost also delivered competitive results due to their efficient boosting algorithms. At the same time, MLP and
LSTM captured nonlinear and temporal dynamics but showed slightly higher error levels due to sensitivity to data
irregularities.

Fig. 5-Fig. 6 presents the Actual vs. Predicted plots, illustrating strong alignment between observed and predicted
prices, particularly for Random Forest, with minimal deviation.

Random Forest : Actual vs Predicted
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Fig. 5: Actual vs Predicted (Random Forest)
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Fig. 6: Actual vs Predicted (CatBoost, XGBoost, LSTM, MLP)

The Residual Plots (Fig.7 — Fig. 8) show that Random Forest residuals (Fig. 7) are symmetrically distributed
around zero, reflecting reduced bias and robust model calibration.

Random Forest : Residual Plot
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Fig. 7: Residual Plot (Random Forest)
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Fig. 8: Residual Plot (CatBoost, XGBoost, LSTM, MLP)

Further, Fig. 9-Fig. 11 display the comparative visualization of R?, MAE, and RMSE across all models,
reaffirming Random Forest’s consistent superiority in predictive accuracy.

Comparison of R? for All Models
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Fig. 9: Comparison of Rz for All Models
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Fig. 11: Comparison of RMSE

These findings establish Random Forest as the most effective model for weekly agricultural price forecasting,
striking a balance between accuracy, reliability, and interpretability for integration with Explainable Al (XAl).

V. Explainability with Shap

To enhance interpretability and transparency of the forecasting framework, SHapley Additive exPlanations
(SHAP) were applied to all tree-based models—Random Forest, XGBoost, and CatBoost. SHAP provides both global and
local explanations by quantifying the contribution of each feature to the model’s output, thereby transforming the predictive
models from black-box systems into interpretable analytical tools.

A. Global Explainability

Global interpretability was achieved using SHAP summary and SHAP bar plots, revealing the overall influence
and relative importance of input features across all model predictions. The SHAP Summary Plots (Fig. 12 for Random
Forest, Fig. 14 for XGBoost, and Fig. 16 for CatBoost) illustrate each feature's contribution to the output, showing both
magnitude and direction of impact. The vertical axis lists features ranked by global importance, while the horizontal axis
represents SHAP values, with red indicating high and blue low feature values. Positive SHAP values increase predictions,
and negative values decrease them.

Across all models, Max Price and Min Price are the dominant predictors with the largest SHAP ranges, while
secondary features like Rolling_3, Rolling_5, and Price_Spread show smaller impacts. CatBoost exhibits tighter clustering
for lower-ranked features, indicating a more focused influence distribution.
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The SHAP Bar Plots (Fig. 13 for Random Forest, Fig. 15 for XGBoost, and Fig. 17 for CatBoost) quantify feature
importance by averaging absolute SHAP values. The top five feature rankings are:

e Random Forest: Max Price, Min Price, Rolling_3, Rolling_5, Modal_Price_Lag 1

e XGBoost: Max Price, Min Price, Rolling_5, Price_Spread, Market

e CatBoost: Max Price, Min Price, Modal_Price_Lag_2, Modal_Price_Lag_3, Modal_Price_Lag_1
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Fig. 12: SHAP Summary Plot (RF)
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Fig. 13: SHAP bar Plot (RF)
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Fig. 15: Bar Plot (CatBoost)
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B. Local Explainability

Fig. 17— Fig. 19 present the SHAP Waterfall Plots for the CatBoost, Random Forest, and XGBoost models,
illustrating local interpretability for a representative data instance (Sample 0). Each plot explains how individual feature
values contribute to the final prediction, showing the transition from the model’s base value E[f(x)] to the predicted output
f(x) through cumulative SHAP contributions.

Red bars denote features that increase the prediction, while blue bars represent those that decrease it, with bar
lengths and numeric values indicating the magnitude of each contribution. Across all three models, Max Price and Min
Price consistently exhibit the strongest negative SHAP values, significantly reducing the predicted price. For instance, in
XGBoost these are approximately —977.24 and —515.59, in CatBoost —658.86 and —532.37, and in Random Forest —879.81
and —582.89, respectively—corresponding to relatively high feature values (—0.284 and ~—0.253).

While Max Price and Min Price dominate across models, secondary features vary slightly: XGBoost shows small
negative effects from Rolling_5, Modal_Price_Lag_1, and Price_Spread; CatBoost displays a balanced effect among lag
variables and categorical features like State (which contributes +51.56); and Random Forest emphasizes the two main price
features with minor influence from others.

In summary, the SHAP Waterfall analysis reveals consistent key drivers (Max Price and Min Price) across models,
but differing secondary feature behaviors, reflecting each model’s unique reasoning. These insights improve model
transparency, interpretability, and trust in agro-economic forecasting.
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Fig. 18: SHAP Waterfall plot (Random Forest)
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Fig. 19: Waterfall Plot (XGBoost)
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Fig. 20: Waterfall Plot (CatBoost)

V1. CONCLUSION & FUTURE WORKS

This study proposed an Explainable Artificial Intelligence (XAl) driven framework for forecasting agricultural
commodity price trends in Bangladesh and India. The Random Forest-based model achieved superior predictive
performance (RMSE = 397.07, MAE = 100.96, R? = 0.9931) compared with XGBoost, CatBoost, MLP, and LSTM models.
Through SHapley Additive exPlanations (SHAP), the framework ensured both global and local interpretability, identifying
key drivers such as maximum price, minimum price, market, and commodity type. By integrating explainability with high
accuracy, the proposed system enhances transparency and supports data-driven decision-making in agricultural policy and
market management.

The study highlights the potential of explainable machine learning to bridge the gap between predictive analytics
and actionable agro-economic insights. However, its reliance on a single dataset and static modeling limits generalizability.
Future research will extend the framework to multi-seasonal and multi-regional datasets, incorporating exogenous variables
such as weather and policy indicators. Moreover, hybrid ensembles and advanced XAl techniques (e.g., LIME,
counterfactuals, attention-based models) will be explored, along with temporal deep learning architectures like Explainable
LSTMs and Temporal Fusion Transformers. The ultimate goal is to develop a fully explainable, real-time forecasting
system for sustainable agricultural market intelligence.
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