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INTRODUCTION 
In 1955 N. Itô (see [7]) found an impressive and very satisfying theorem for arbitrary factorized groups. He proved that every 

product of two abelian groups is metabelian. Besides that, there were only a few isolated papers dealing with infinite factorized groups. 
P.M. Cohn (1956) (see[21]) and L.Redei (1950)(see [22])  considered  products of cyclic groups, and around 1965 O.H.Kegel (See 
[30, 31]) looked at linear and locally finite factorized groups. 

 
In 1968 N.F. Sesekin (see [19]) proved that a product of two abelian subgroups with minimal condition satisfies also the 

minimal condition. He and Amberg independently obtained a similar result for the maximal condition around 1972 (See [20, 1]). 
Moreover, a little later the proved that a soluble product of two nilpotent subgroups with maximal condition likewise satisfies the 
maximal condition, and its Fitting subgroups inherits the factorization. Subsequently in his Habilitationsschrift (1973) he started a more 
systematic investigation of the following general question. Given a (soluble) product G of two subgroups A and B satisfying a certain 

finiteness condition x , when does G have the same finiteness condition x ?(See [20]) 

 
For almost all finiteness conditions this question has meanwhile been solved. Roughly speaking, the answer is 'yes' for 

soluble (and even for soluble-by-finite) groups. This combines theorems of B. Amberg (see [1-4] and [6]) , N.S. Chernikov (see [5]), S. 
Franciosi, F. de Giovanni (see [3, 6, 32-36]), O.H.Kegel (see [8]), J.C.Lennox (see [12]) , D.J.S. Robinson(see [9] and [15]), J.E. 
Roseblade (see [13]), Y.P.Sysak(see [37-40]), J.S.Wilson (see [41]), and D.I.Zaitsev(see [11] and [18]). 

 
Now, In this paper we show that If the soluble-by-finite group G=AB is the product of two polycyclic-by-finite subgroups A 

and B, then G is polycyclic-by-finite. 
 
Priliminaries: ( elementary properties and theorems.) 
 
Difinition: Recall that the FC-centre of a group G is the subgroup of all elements of G with a finite number of conjugates. A group is 
an FC-group if it coincides with its FC-centre.  
 
Lemma: Let the group G=AB be the product of two abelian subgroups A and B, and let S be a factorized subgroup of G. Then the 
centralizer CG(S) is factorized. Moreover, every term of the upper central series of G is factorized.  
 

Proof: Since S is factorized, we have that S= S).S)(B(A   Let x=ab be an element of S, where a is in SA and b is in 

SB .If c=a1b1 is an element of CG(S), with a1 in A and b1 in B, it follows that.  



 

Behnam Razzaghmaneshi; South Asian Res J Eng Tech; Vol-1, Iss- 2 (Aug-Sep, 2019): 50-55 

© South Asian Research Publication, Bangladesh            Journal Homepage: www.sarpublication.com/sarjet 51 

 

          1.bc,b,cbb,aab,ax,a
-1
1b1-

1111   

 
Therefore a1 belongs to CG(S), and CG(S) is factorized by Lemma 1.1.1 of [4]. In particular, the center of G is factorized. It 

follows from Lemma 1.1.2 of [4] that also every term of the upper central series of G is factorized.  
 
Lemma: Let the group G=AB be the product of two subgroups A and B. If A1, B1, and F are the FC-centers of A, B, and C, 

respectively, then F=A1F B1F. In particular, if A and B are FC-groups, the FC-centre of G is factorized subgroup.  

 

Proof:  Let x be an element of A1F  B1F, and write x=au where a is in A1 and u is in F. Since the centralizers CA(a) and CA(u) have 

finite index in A, the index |A: CA(x)| is also finite. Similarly, CB(x) has finite index in B. Therefore |G:<CA(x),CB(x)>| is finite by Lemma 

1.2.5 of [4]. It follows that CG(x) has finite index in G and hence x belongs to F. Thus F=A1F B1F.  

 
Lemma: (See [7]) Let the finite non-trivial group G=AB be the product of two abelian subgroups A and B. Then there exists a non-
trivial normal subgroup of G contained in A or B. 
 
Proof: Assume that {1} is the only normal subgroup of G contained in A or B. By Lemma 2.11 have Z(G)=(A

1.Z(G))Z(G))(B   The centralizer ,GA contains ))G(C (AC=C GG   and so is normal in G. Since 

1,Z(G) (AZ(C))B   it follows that A.AZ(C))A(BAZ(C)   This Z(G) is a normal subgroup of G 

contained in A, and so Z(G)=1. Since G  is abelian by Theorem 2.9, we have 1.Z(C))G(CAGA G    

 

Similarly 1.Z(C))G(CBGB G   The factorizer )GX(X  has the triple factorization 

  ,G*BG*AB**AX  Where  GBAA*   and  .GABB*    Thus X is nilpotent by Corollary 

2.8, so that 

Z(X))Z(X))(B(AZ(X)   

is not trivial. Hence there exists a non-trivial normal subgroup N of X contained in A or B. Suppose that N is contained in A. Since G

normalizes N, we have   1.GAGNGN,    Therefore we obtain the contradiction 

1.)G(GAN G    

 
Corrollary: Let the finite group G=A1…At be the product of pairwise permutable nilpotent subgroups A1,…,At. Then G is soluble.  
 

Proof. Let p be a prime, and for every i=1…,t let P1 be the unique Sylow  p-complement of Ai. If ji  , the subgroup AiAj is soluble 

by Theorem 2.4.3 of [4]. Hence it follows from Lemma 2.6,that PiPj is a Sylow p-complement of AiAj. Thuse the subgroups P1,…,Pt 
pairwise permute, and the product P1P2…Pt is a Sylow p-complement of G. Since G has a Sylow p-complement for every prime p, it is 
soluble.  
 
Theorem (See [8, 10]): If the finite group G=AB is the product of two nilpotent subgroups A and B, then G is soluble. 
 
Proof: See [4], (Theorem 2.4.3). 
 
Lemma: Let A and B be subgroups of a group G, and let A1 and B1 be subgroups of A and B, respectively, such that 

m|A : A| 1   and n.|B : B| 1  Then mn.|BA :B A| 11   

 

Proof : To each left coset )Bx(A 11  of 11 BA  in BA assign the pair of left cosets ).xB,(xA 11 Clearly this 

defines an injective map from the set of left cosets of 11 BA  in BA  into the cartesian product of the set of left cosets of A1 

in A and the set of left cosets of B1 in B. The lemma is proved.  
 
Lemma (See [11]): Let the finitely generated group G=AB=AK=BK be the product of two ablian-by-finite subgroups A and B and an 
abelian normal subgroup K of G. Then G is nilpotent-by-finite.  
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Proof:  Let A1 and B1 be abelian subgroups of finite index of A and B, respectively, and let n be a positive integer such that |A:A1|

n  AND |B:B1| n . Since G is finitely generated, it has only finitely many subgroups of each finite index, and hence the 

intersection H of all subgroups of G with index at most n4 also has finite index in G. In particular H is finitely generated.  
 
Consider a finite homomorphic image H/N of H. Then N has finite index in G, and hence also its core NG has finite index in 

G. Let p1,…,pt be the  prime divisors of the order of the finite abelian group ).NK/(K G  For each t,j  let 

)N/(KK Gj   be the componentp j  of ).NK/(K G Clearly each K, is normal in G and 

.NKK Gj
t

1j   The factor group G/K,G   has the triple factorization  ,KBKABAG  where 

K is a finite normal subgroupp j   of G . Clearly 

k
jp  |KB:K | . |KA:K|                  

|B:G | . |A : G| |BA:A | . |A:G||BA:G|








 

 

for some non-negative integer k. On the other hand, 
2

11 n|BA :BA|   by Lemma 2.16, so that 

2k
j11 np|BA : G|  . As 1A  and 1B  are abelian, the intersection 11 BA   is contained in the centre of 11 B,A , 

and the factor group )BA(/B,A 1111   has order at most 
2k

j np . Let )BA(/P 11  be a Sylow pj-subgroup of 

)BA(/B,A 1111  . Then ,n|P:B,A| 2
11   and since 

2
11 n|B,A: G|   by Lemma 2.2, we obtain 

.n|P: G| 4 Therefore HKj/Kj is contained in P .As an extension of the central subgroup 11 BA   by a finite pj-group, P  

is nilpotent, so that  K/HK ~ )KH/(H jjj is also nilpotent for each j. Hence.  

)NH/(K)K(HH Gj

t

1j

 










is nilpotent. We have shown that each finite homomorphic image of H is nilpotent 

. As K is abelian, H is soluble, and hence even nilpotent (Robinson 1972, Part 2,Theorem 10.51).Therefore G is nilpotent-by-finite. 
 
Difinition: A group G has finite Prüfer rank r=r(G) if every finitly generated subgroup of G can be generated by at most r elements, 
and r is the least positive integer with this properly. Clearly subgroups and homomorphic images of groups with finite Prüfer rank also 
have finite Prüfer rank. 
 

Lemma: (See [13]) If N is a maximal abelian normal dubgroup of a finite p-group G, then 1).r(N) (5 r(N)
2

1
r(G)   

 

Proof:  Since N,N)(CG  the factor group G/N is isomorphic with a p-group of automorphism of N. Thus G/N has perüfer rank 

at most 1)-r(N)(5r(N)
2

1
(See [15], part2, lemma 7.44), and hence . 1)r(N)(5r(N)

2

1
r(G)   

 
Theorem: (See [9] and [11]) If the locally soluble group G=AB with finite Prüfer rank is the product of two subgroups A and B, then the 
Prüfer rank of G is bounded by a function of the Prüfer ranks of A and B.  
 
Proof: First, let G be a finite p-group for some prime p. If N is a maximal abelian normal subgroup of G, by Lemma 2.18 we have 

1).r(N)(5r(N)r(G)
2
1   Hence it is enough to prove that r=r(N) is bounded by a function of the maximum s of r(A) and r(B). The 

socle S of N is an elementary abelian group of order p . Clearly it is sufficient to prove the theorem for the factorizer X(S) of S. 

Therefore we may suppose that the group G has a triple factorization G=AB=AK=BK, where K is an elementary abelian normal 

subgroup of G of order p .  
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Let e be the least positive integer such that 
epA is contained in B. By Lemma 4.3.3 of [4], we have 

2e s-eg(s)p p|A:A|  |BA:A|   Where  1).s(3s g(s)
2
1   Since  

,
|KB|

|K| . B

|BA|

|B| . A
|G|


  

 

It follows that .p pp  |KB| . |BA:A|K ss-eg(s)ss-eg(s) 22   Hence 

eg(s).ss-eg(s)r 2  Therefore it is enough to show that 3.g(s)e   Therefore it is enough to show that 

. 3g(s)e   

 

Clearly we may suppose that e>1. Let a be an element of A such that 
1-epa is not in B, and write 

1-epa =xb, with x in K 

and b in B. Then 1,]a[x,
2-ep  because otherwise 

,aax)ax(b
1-e1-e2-e ppp-pp1-p   

 
contrary to the choice of a. As K has exponent p, it follows from the usual commutator laws that .  

2a]..p [x,a] [x,]a[x, e)(p

i

p

1i

p
2-ie2-e

2-e




 

 

Thus 1,]G G,...,[K,
2-ep




 and so |K|>
2-epp since G isa finite p-group. Therefore  eg(s).rp 2-p  If 4g(s)e 

, then eg(s).1)g(s)(e4)-1)(e(e2p 2-e2-e  . 

 

This contradiction shows that 3.g(s)e   

 
Suppose now that G=AB is an arbitrary finite soluble group. For each prime p, by Corollary 2.7 there exist Sylow p-

subgroups Ap of A and Bp of B such that Gp=ApBp is a Sylow p-subgroup of G. As was shown above, r(Gp) is bounded by a function 
f(s) of the maximum s of r(A) and r(B), and this does not depend on p. Thus every subgroup of prime-power order of G can be 
generated by a function f(s) of the maximum s of r(A) and r(B), and this does not depend on p. Thus every subgroup of prime-power 
order of G can be generated by at most f(s) elements. Application of Theorem 4.2.1 of [4] yields that every subgroup of G can be 
generated by at most f(s)+1 elements, and hence the Prüfer rank of G is bounded by f(s)+1. This proves the theorem is the finite case.  

 
Let G=AB be an arbitrary locally soluble group with finite Prüfer rank. If N is a finite normal subgroup of G, and X=X(N) is its 

factorizer, then the index  |BA:X|  1.1.5. Lemmaby  finite is  of core the be Y Let  X in BA
. Since the factorized group X/Y is finite, it follows from the first part of the proof that thePrüfer rank of X/Y is bounded by a function of 

the Prüfer ranks of A and B. As r(X/Y)r(A)r(X/Y)r(Y)r(X)r(N)  (e.g.see Robinson 1972, Part 1, 

Lemma 1.44) we obtain that there exists a function h such that k,r(B)) h(r(A),r(N)   for every finite normal subgroup N 

of G. Clearly the same holds for every finite normal section of G.  
 

Let T be the maximum periodic normal subgroup of G. If p is a prime, the group (T)T/OT p  is Chernikov by 

Lemma 3.2.5 of [4] (See also [16]). Let J be the finite residual of T , and S  the socle of J . Since S and  J/T  are finite, it 

follows that 2k.)J/Tr()Sr()J/Tr()Jr()Tr(   
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As the Sylow p-subgroups of T can be embedded in T , they have Prüfer rank at most 2k. Application of Theorem 4.2.1 of 

[4] (See also [14]).  yields that every finite subgroup of T can be generated by atmost 2k+1 elements. Hence r(T) 1.2k   

 

The group G/T is soluble (See[15]), Part 2, Lemma 10.39), and so the setoff primes (G/T)  is finite by Lemma 4.1.5 of 

[5] (See also [15]). It follows from Lemma 4.1.4 of [4] (See also [15]) that there exists in G a normal series of finite length 

G,GGT 21   where G1/T is torsion-free nilpotent, G2/G1 is torsion-free abelian, and G/G2 is finite. Therefore 

1.3k(G)r        

)r(G/G(G)rr(T)        

)r(G/G)G/r(GT)/r(Gr(T)r(G)

0

20

2121







 

By theorem 4.1.8 of [4] (See also [3] ) we have that (B).r(A)r(G)r 000   

 

Moreover, 4.3.4 Lemmaby  r(B)(B)r and r(A)(A)r 00   of [4] (See also [9]). Therefore 

1.3kr(B)r(A)r(G)   The theorem is proved.  

 
Lemma(See [17]:  Every finitely generated abelian-by- polycyclic Group is residually finite.  
 
Proof: See ([4], Lemma 4.4.1)  
 
MAIN Theorem: 

Theorem: If the soluble-by-finite group G=AB is the product of two polycyclic-by-finite subgroups A and B, then G is 
polycyclic-by-finite. 

 
Proof: Assume that G it not polycyclic-by-finite. Then G contains an abelian normal section U/V which is either torsion-free 

or periodic and is not finitely generated. Clearly the factorizer of U/V in G/V is also a counterexample. Hence we may suppose that G 
has a triple factorization G=AB=AK=BK, Where K is an abelian normal subgroup of G which is either torsion-free or periodic. By 
Lemma 1.2.6(i) of [4] (See also [17]) the group G satisfies the maximal condition on normal subgroups, so that it contains a normal 
subgroup M which is maximal with respect to the condition that G/M is not polycyclic-by-finite. Thus it can be assumed that every 
proper factor group of G is polycylic-by-finite.  
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