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Abstract: In this paper, we contribute some new results on signed product cordial labeling and present necessary and 

sufficient conditions for signed product cordial in two cases:first ,the sum of the fourth power of paths with cycles and 

second, the union of the fourth power of paths with cycles. 
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INTRODUCTION 
Graph theory is well known subject in mathematics and computer science. Graph theory is now a major tool in 

mathematical research, marketing and so on. Graph labeling is one of the research area in graph theory. The concept of 

graph labeling was introduced by Rosa in 1967 [5]. A graph labeling is an assignment of integers to the vertices or edges 

or both subject to certain condition(s). Most of the graph labeling problems have the following three common 

characteristics: a set of numbers for assignment of vertex labels, a rule that assigns a label to each edge and some 

condition(s) that these labels must satisfy. For detailed survey on graph labeling we refer to A Dynamic Survey of Graph 

Labeling by Gallian [4]. Cordial labeling was introduced by Cahit [1] who called a graph   cordial if there is a vertex 

labeling    ( )  *   + such that the induced labeling     ( )  *   +, defined by   (  )    ( )   ( ) , for all 

edges      ( ) and with the following inequalities holding:    ( )    ( )    and    ( )    ( )    , where 

  ( ) (respectively   ( )) is the number of vertices (respectively, edges) labeled with  . Motivated through the concept of 

cordial labeling the product cordial labeling was introduced by Sundaram et al.[6] where absolute difference of vertex 

labels is replaced by product of vertex labels.  

 

Preliminaries 

In this section, we give the basic definitions relevant to this paper. Let  (   ) be a finite, simple and undirected 

graph with   vertices and   edges. 

 

Definition 1. A vertex labeling of graph      ( )  *    + with induced edge labeling     ( )  *    + defined by 

  (  )   ( )  ( ) is called a signed product cordial labeling if    (  )    ( )    and    (  )    ( )   , 

where   (  ) is the number of vertices labeled with -1,   ( ) is the number of vertices labeled 1,  (  )(  ) is the 

number of edges labeled with -1 and  ( 
 )( ) is the number of edges labeled 1. A graph   is signed product cordial if it 

admits signed product cordial labeling. 

 

Definition 2. The fourth power of a cycles   , denoted by   
 , is   ⋃   , where J is the set of all edges of the form 

edges      such that    (    )    and     where  (    ) is the shortest distance from    to   . 
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Definition 3. The Sum or join is      ,is the graph with vertex set and edge set given by  (  )   (  ) 
= (  )⋃   (  ) and  (     )=  (  )⋃   (  )⋃   , where   consists of edges join each vertex of    to every 

vertex of    . 

 

Definition 4. The union is   ⋃    =(  ⋃       ⋃    ) (simple graph). The fourth power of a cycles    denoted by 

  
  is   ⋃   , where J is the set of all edges of the form edges      such that    (    )    and    . 

Diab [2-3] has reported several results concerning the sum and union of the cycles    and paths    together and with 

other specific graphs. 

 

Terminologies and Notations 

A cycle with   vertices and   edges, denoted by   , and its fourth power   
  has   vertices and      edges. 

We let     denote the labeling (  )    (  )   ... (  )    (repeated  -times), Let      denote the labeling 

(  )  (  ) (  )  (  )...(  )  (  ) (repeated  -times). 

 

The labeling   (  )     (  ) ...  (  )  (repeated  -times) and labeling  (  )   (  )  ...  (  )   

(repeated  -times) are written     and     . Let    denote the labeling (  )  (  )    (  ) , zero-one repeated  times 

if   is even and (  )  (  )    (  ) (  )  if   is odd; for example,    (  ) (  ) (  )  and 

   (  ) (  ) (  ). We let     denote the labeling  (  ) (  )    (  ). Sometimes, we modify the labeling    
or     by adding symbols at one end or the other (or both). Also,     (or      ) with extra labeling from right or left (or 

both sides). 

 

If   is a labeling for fourth power of paths    and   is a labeling for fourth power of paths   , then we use the 

notation ,   - to represent the labeling of the sum   
    

 . Additional notation that we use is the following. For a 

given labeling of the sum   
    

 , we let    and    (for       ) be the numbers of labels that are   as before, we let    
and    be the corresponding quantities for   

 , and we let    and    be those for   
 . It is easy to verify that        

(      )  (      ) and        (      )  (      )  (      )(      ). 
 

Also for   
    

 , we use the same notation ,   -. Additional notation that we use is the following. For a given 

labeling of the union   
    

 , we let    and    (for       ) be the numbers of labels that are   as before, we let    and 

   be the corresponding quantities for   
 , and we let    and    be those for   

 . It is easy to verify that        (    
  )  (      ) and        (      )  (      ) . When it comes to the proof, we only need to show that, for 

each specified combination of labeling,            and           . 

 

MAIN RESULTS 
Signed product cordial of the sum of the fourth power of paths with cycles. 

In this section, we study the signed product cordial of the sum of the fourth power of paths with cycles. 

 

Lemma 4.1.1. If    (     ), then   
    

  is signed product cordial for all      . 

 

Proof. Suppose that     , where    . The following cases will be examined. 

 

Case 1.    (     ). 
Suppose that     , where    . Then we label the vertices of    

     
  by ,(  )     (  )       - . 

Therefore                                                   It follows that          

and         . As an example, Figure (1) illustrates   
    

 . Hence,    
     

  is signed product cordial. 
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Fig-1 

 

Case 2.    (     ). 
Suppose that       , where    . Then we label the vertices of    

       
  by 

,(  )     (  )      (  )- . Therefore                                             
           It follows that          and         . Hence,    

       
  is signed product cordial. 

 

Case 3.    (     ). 
Suppose that       , where    . Then we label the vertices of    

       
  by 

,(  )     (  )   (  )         -. Therefore                                             
      It follows that          and         . Hence,    

       
  is signed product cordial. 

 

Case 4.    (     ). 
Suppose that       , where    . Then we label the vertices of    

       
  by 

,(  )     (  )       (  ) (  )-. Therefore                                            
              It follows that          and         . Hence,    

       
  is signed product cordial. 

 

Lemma 4.1.2. If    (     ), then   
    

  is signed product cordial for all      . 

 

Proof. Suppose that       , where    . The following cases will be examined. 

 

Case 1.    (     ). 
Suppose that     , where    . Then we label the vertices of      

     
  by ,(  )       (  )      -. 

Therefore                                                        It follows that 

         and         . Hence,      
     

  is signed product cordial. 

 

Case 2.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,(  )       (  )          (  ) - . Therefore                                         
                    It follows that          and         . Hence,      

       
  is signed product 

cordial. 

 

Case 3.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,(  )       (  )  (  )         . Therefore                                            
            It follows that          and         . Hence,      

       
  is signed product cordial. 
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Case 4.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,        (  ) (  ) (  )  (  )      (  ) - . Therefore                                   
                            It follows that          and         . Hence,      

       
  is 

signed product cordial. 

Lemma 4.1.3. If    (     ), then   
    

  is Signed-signed product cordial for all      . 

 

Proof. Suppose that       , where    . The following cases will be examined. 

 

Case 1.    (     ). 
Suppose that     , where    . Then we label the vertices of      

     
  by ,(  )  (  )     (  )     - . 

Therefore                                                     It follows that     
     and         . Hence,      

     
  is signed product cordial. 

 

Case 2.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,(  )  (  )     (  )    (  )- . Therefore                                            
              It follows that          and         . Hence,      

       
  is signed product cordial. 

 

Case 3.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,(  )  (  )     (  ) (  )         -. Therefore                                         
            It follows that          and         . Hence,      

       
  is signed product cordial. 

 

Case 4.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,(  )  (  )     (  )     (  ) (  )-. Therefore                                        
                    It follows that          and         . Hence,      

       
  is signed product 

cordial. 

 

Lemma 4.1.4. If    (     ), then   
    

  is Signed product cordial for all      . 

 

Proof. Suppose that       , where    . The following cases will be examined. 

 

Case 1.    (     ). 
Suppose that     , where    . Then we label the vertices of      

     
  by ,(  )          -. Therefore 

                                                         It follows that        
  and         . Hence,      

     
  is signed product cordial. 

 

Case 2.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,(  )              (  ) - . Therefore                                                 
              It follows that          and         . Hence,      

       
  is signed product cordial. 

 

Case 3.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,(  )      (  )         - . Therefore                                              
          . It follows that          and         . Hence,      

       
  is signed product cordial. 

 

Case 4.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,     (  ) (  )  (  )      (  ) -. Therefore                                          
                       It follows that          and         . Hence,      

       
  is signed 

product cordial. 

 

As a consequence of all lemmas mentioned above we conclude the following theorem. 

 

Theorem 4.1   
    

  is signed product cordial for all   and all   except     both equal to 7. 
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Signed product cordial of the union of the fourth power of paths with cycles 

     In this section, we study the signed product cordial of the union of the fourth power of paths with cycles. 

 

Lemma 4.2.1. If    (     ), then   
    

  is Signed product cordial for all      . 

 

Proof. Suppose that     , where    . The following cases will be examined. 

 

Case 1.    (     ). 
Suppose that     , where    . Then we label the vertices of    

     
  by ,(  )     (  )       - . 

Therefore                                                   It follows that          

and          . As an example, Figure (2) illustrates   
    

 . Hence,    
     

  is signed product cordial. 

 

  
   
    

  

Fig-2  

  

Case 2.    (     ). 
Suppose that       , where    . Then we label the vertices of    

       
  by 

,(  )     (  )      (  )- . Therefore                                             
           It follows that          and         . Hence,    

       
  is signed product cordial. 

 

Case 3.    (     ). 
Suppose that       , where    . Then we label the vertices of    

       
  by 

,(  )     (  )   (  )         -. Therefore                                             
      It follows that          and         . Hence,    

       
  is signed product cordial. 

 

Case 4.    (     ). 
Suppose that       , where    . Then we label the vertices of    

       
  by 

,(  )     (  )       (  ) (  )-. Therefore                                            
              It follows that          and         . Hence,    

       
  is signed product cordial. 

 

Lemma 4.2.2. If    (     ), then   
    

  is Signed product cordial for all      . 

 

Proof. Suppose that       , where    . The following cases will be examined. 

 

Case 1.    (     ). 
Suppose that     , where    . Then we label the vertices of      

     
  by ,(  )       (  )      -. 

Therefore                                                        It follows that 

         and         . Hence,      
     

  is signed product cordial. 

 

Case 2.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,(  )       (  )          (  )(  )- . Therefore                                         
                  . It follows that          and          . Hence,      

       
  is signed product 

cordial. 

 

Case 3.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,(  )       (  )  (  )         -. Therefore                                            
            It follows that          and         . Hence,      

       
  is signed product cordial. 
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Case 4.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,        (  ) (  )     (  ) (  )-. Therefore                                           
                    It follows that          and         . Hence,      

       
  is signed product 

cordial. 

 

Lemma 4.2.3. If    (     ), then   
    

  is Signed product cordial for all      . 

 

Proof. Suppose that       , where    . The following cases will be examined. 

 

Case 1.    (     ). 
Suppose that     , where    . Then we label the vertices of      

     
  by ,(  )  (  )     (  )     -. 

Therefore                                                   . It follows that     
     and         . Hence,      

     
  is signed product cordial. 

 

Case 2.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,(  )  (  )     (  )    (  )- . Therefore                                            
              It follows that          and         . Hence,      

       
  is signed product cordial. 

 

Case 3.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,(  )  (  )     (  ) (  )         - . Therefore                                   
                . It follows that          and         . Hence,      

       
  is signed product 

cordial. 

 

Case 4.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,(  )  (  )     (  )     (  ) (  )-. Therefore                                        
                    It follows that          and         . Hence,      

       
  is signed product 

cordial. 

 

Lemma 4.2.4. If    (     ), then   
    

  is Signed product cordial for all      . 

 

Proof. Suppose that       , where    . The following cases will be examined. 

 

Case 1.    (     ). 
Suppose that     , where    . Then we label the vertices of      

     
  by ,(  )          -. Therefore 

                                                         It follows that        
  and         . Hence,      

     
  is signed product cordial. 

 

Case 2.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,(  )              (  ) - . Therefore                                                 
              It follows that          and          . Hence,      

       
  is signed product cordial. 

 

Case 3.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,(  )      (  )         - . Therefore                                              
            It follows that          and         . Hence,      

       
  is signed product cordial. 

 

Case 4.    (     ). 
Suppose that       , where    . Then we label the vertices of      

       
  by 

,     (  )     (  ) (  )- . Therefore                                             
                    It follows that          and         . Hence,      

       
  is signed product 

cordial. 
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As a consequence of all lemmas mentioned above we conclude the following theorem. 

 

Theorem 4.1   
    

  is signed product cordial for all   and all  . 

 

CONCLUSION  
In this paper we test the signed product cordial of the Sum and Union of fourth power of paths with cycles, we 

found that   
    

  is cordial for all       and   
    

  is cordial for all     except     both equal to 7. 
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