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Abstract: Derivative is a foundational concept in calculus but can be challenging for secondary students to grasp 

conceptually. This paper provides an overview of research-backed strategies for developing a strong conceptual 

understanding of derivative. Visual and intuitive approaches are discussed, such as relating the derivative to real-world 

contexts involving speed, growth, and modeling phenomena. The importance of multiple linked representations and 

building connections between graphical, numeric, verbal and symbolic perspectives is emphasized. Strategies for 

motivating learning through real-world applications and simulations relating concepts to students' lives are outlined. 

Procedural expertise and conceptual mastery are cultivated together. The benefits of a conceptual learning, problem solving 

abilities, and STEM-related fields are noted. Curricular recommendations focus on conceptual exploration prior to formal 

definitions. Thus, the paper highlights best practices for conceptualizing derivative through visual-intuitive, multi-

representational and application-based approaches to promote flexible, adaptive understanding and lay the groundwork for 

calculus success. 

Keywords: Calculus, Conceptual understanding, Derivatives, Rates of change, Visualization. 

 

INTRODUCTION 
Derivative is the fundamental concept in calculus that builds upon the understanding of rates of change 

(Thompson, 1994). However, research has shown that many secondary-level students struggle to develop a conceptual 

understanding of derivatives due to their abstract and counterintuitive nature (Orton, 1983; Ferrini-Mundy & Graham, 

1994). Without a coherent conceptual understanding, students often resort to rote memorization of procedures instead of 

the flexible application of derivative principles (Rasmussen, 2001). Extensive literature in mathematics education has 

focused on the concept of derivatives and its applications in various fields. Prominent calculus textbooks, such as Stewart 

(2015), Anton et al., (2012), and Larson et al., (2013), highlight the fundamental role of derivatives and their relevance in 

real-life scenarios. 

 

The definition of derivative as the rate at which a quantity changes with respect to another variable is a 

fundamental concept taught in secondary-level mathematics education (Stewart, 2015; Anton et al., 2012). The unique 

property of derivatives in capturing instantaneous rates of change and examining the behavior of functions at specific points 

is a well-established aspect of calculus (Stewart, 2015). To facilitate conceptual understanding, the geometric interpretation 

of derivatives is commonly employed. This approach relates derivative to the slopes of curves, is documented in various 

calculus textbooks (Stewart, 2015; Anton et al., 2012). By visualizing derivative in terms of geometric representations, 

students can better grasp the concept and its significance (Stewart, 2015). It is crucial for students to understand the 

distinction between average rate of change and instantaneous rate of change, which is emphasized in calculus textbooks 

(Stewart, 2015; Anton et al., 2012). Exploring the difference between these two concepts enables students to develop a 

deeper understanding of derivatives as tools for analyzing dynamic systems. The role of limits in derivative calculations is 

fundamental in calculus (Stewart, 2015; Anton et al., 2012). Taking the limit of a difference quotient is a standard procedure 
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for calculating derivative. The notion of approaching infinitesimally small intervals, central to the concept of limits, is 

essential for understanding the mathematical foundation of derivative (Stewart, 2015). 

 

The practical applications of derivative in daily life are well-documented in calculus. Stewart (2015) and Anton 

et al., (2012) emphasize the extensive use of derivative in the fields such as physics, economics, engineering, and computer 

science. These applications enable us to model and analyze real-world phenomena, ranging from the motion of objects to 

optimization problems. Secondary-level mathematics students can acquire a robust comprehension of derivative and 

enhance their problem-solving abilities with real-world application by implementing techniques to conceptualize derivative 

and exploring their practical applications in everyday life. The importance of these strategies for mathematics education 

has been emphasized by various authors and researchers in the field of calculus (Stewart, 2015; Anton et al., 2012; Larson 

et al., 2013). 

 

A strong conceptual understanding of derivative is crucial, as calculus lays the groundwork for more advanced 

math, science, and engineering courses (Drijvers et al., 2016). Wewe (2020) argue that conceptual mastery in introductory 

calculus leads to better preparation for university-level mathematics. Furthermore, Huang (2011) found a significant link 

between conceptual proficiency in derivatives and achievement in forthcoming physics applications of calculus. The 

conceptual understanding of derivatives, which are fundamental concepts in calculus, frequently poses challenges for 

students in their educational journey (Orton, 1983; Drijvers et al., 2016). The abstract nature of derivatives can stance 

challenges for students unless presented with real-world contexts and practical applications (Brown, 2019). Research has 

demonstrated that when students are provided with strategies to conceptualize derivatives, it leads to improved educational 

outcomes (NCTM, 2014).  

 

Derivatives have numerous practical applications in modeling dynamical systems and optimizing outcomes in 

various domains. Connecting derivatives to real-world problems motivates the learners and retention of abstract 

mathematical concepts, demonstrating the utility of calculus skills (Hyer & Gardner, 2007). The application of derivative 

in analyzing rates of change in natural phenomena fosters an appreciation for mathematics as a functional tool, supporting 

STEM interest development (Maltese & Tai, 2010). Mastery of derivative enables a comprehensive understanding of 

quantitative aspects in fields such as economics, medicine, and engineering, opening pathways to technical careers that 

shape modern life (National Research Council, 2012). Representing real situations mathematically through derivative 

clarifies conceptual foundations and builds quantitative reasoning, providing transferable skills applicable to diverse 

endeavors (Chauvot, 2009). 

 

Understanding derivative also plays a crucial role in addressing complex societal issues. The ability to apply 

derivative principles aids in problem-solving, resource management, climate change modeling, trends of epidemiology, 

and many other areas where quantitative analysis is essential (National Research Council, 2012). By understanding 

derivative, individuals can engage in informed discussions and make decisions based on data-driven insights. Furthermore, 

a conceptual understanding of derivative promotes critical thinking and logical reasoning, empowering individuals to 

evaluate claims and arguments that involve rates of change and optimization. 

 

In conclusion, derivatives are a fundamental concept in calculus with broad applications in various fields. 

However, students often struggle to develop a conceptual understanding of derivatives due to their abstract nature. 

Geometric interpretations, the distinction between average and instantaneous rates of change, and the role of limits are key 

components in facilitating conceptual understanding. Moreover, connecting derivative to real-world scenarios and 

applications enhances motivation and supports the development of problem-solving skills. A strong conceptual 

understanding of derivatives is essential for success in advanced mathematics and for applying mathematical principles in 

practical situations. It also equips individuals with transferable skills that are valuable in a wide range of domains and 

societal contexts. 

 

Historical Context of Evolving Derivative 

The foundations of derivative can be traced back to ancient Indian, Chinese, Greek and Islamic mathematicians 

who explored infinitesimals and rate of change (Katz, 1998). Ancient mathematicians initially explored the concept of 

derivative to understand rates of change, although it was not until the 19th century, through the contributions of Cauchy 

and Weierstrass, that formal definitions incorporating limits were developed (Boyer, 1968). However, modern calculus 

originated in the 17th century with the independent work of Newton and Leibniz, who formalized derivative and integrals 

using the limit process (Boyer, 1968). Newton's seminal work "Methodus Fluxionum et Serierum Infinitarum" published 

in 1671, and introduced a graphical approach to conceptualizing derivative that represented a significant advancement at 

the time. He used physical notions of motion and a quantity's "fluxion" or instantaneous rate of change to geometrically 

link a varying function with the increments of its independent variable as it changed (White, 1961). Newton's approach 

visualized the derivative as the slope of the tangent line to a function's curve at a given point, representing the instantaneous 

velocity of the dependent variable. This built upon earlier work utilizing average rate of change over intervals, moving 
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calculus toward the foundation of the limit that would later be formalized. Newton used physical analogies like motion to 

explain derivative in a more intuitive and visual way. His graphical interpretation, which involved diagrams and pictures, 

helped us understand derivative beyond just average rates. This approach was a pioneering effort in conceptualizing 

derivatives (White, 1961). Meanwhile, Leibniz published De Geometria surva, investigating a geometric interpretation of 

the derivative through infinitesimals (Leibniz, 1676). However, their notation and limit-based theories were not fully 

developed until later work by mathematicians such as Euler, Cauchy and Weierstrass in the 18th-19th centuries (Edwards, 

1979). 

 

Early instruction of calculus concepts took a procedural approach rooted in symbolic manipulation (Ferrini-

Mundy & Graham, 1994). In the late 1900s, prior to the introduction of limits, early attempts to conceptualize derivative 

was made through geometric and intuitive approaches. These methods based on infinitesimals aimed to develop 

understandings of derivative before the concept of limits, but sometimes mixed up graphical and symbolic aspects (Tall, 

2013). Through the 20th century, graphical approaches emphasizing visual reasoning for derivative emerged (Cornu, 1991). 

More recently, conceptual instruction stresses multiple representations, real-world connections and active-learning 

experiences to build robust understanding (Orton, 1983; White, 1961). 

 

Over time, the conceptualization of derivative has progressed from ancient geometric intuitions to contemporary 

formalizations based on limits. Ongoing advancements in instructional strategies continue to incorporate visual-spatial, 

tangible, and applied perspectives (Atit et al., 2020). This reflects ongoing efforts to overcome epistemological obstacles 

and effectively impart both conceptual understanding and technical proficiency with this core calculus concept. 

 

Ancient Greek mathematicians including Eudoxus, Archimedes and Apollonius made early contributions to 

conceptualizing rates of change and derivatives through investigations of exhaustion proofs and theorems involving 

tangents to curves (Netz, 2022). This built on earlier work by Indian mathematicians who studied infinitesimals in the spirit 

of calculus (Stillwell, 2010). In Asia, Chinese mathematician Liu Hui explored derivatives and rates of change through 

diagrams and algebraic formulas as early as the 3rd century (Cullen, 1996). Other Asian mathematicians such as Bhaskara 

II expanded this work, introducing basic concepts of maxima, minima and rates of change (Joseph, 2000). In the 17th 

century, Fermat introduced adequality and tangents to problems involving maxima and minima, influencing early 

conceptualizations of differentiation (Edwards, 1979). Cavalieri introduced a precursor to limits called method of 

indivisibles for finding lengths, areas, and tangents (Bell, 2008). 

 

In the 20th century, research further expanded the conceptual foundations of derivative. Schwartz reworked 

analysis using distributions and generalized functions, connecting derivative to impulse type concepts (Schwartz, 1950). 

Tall incorporated cognitive science and proposed three worlds of mathematics - embodied, proceptual, and 

formal/axiomatic representations (Tall, 2013). Recent work focuses on multi-representational sense making through 

graphic, numeric, algebraic and contextual understandings. Technological tools and simulated environments also support 

dynamic exploration and conceptualizing derivative (Yang & Baldwin, 2020). This provides historical context on evolving 

perspectives of derivative from antiquity to present day instructional paradigms. 

 

Rationale of the Study 

Derivative, a fundamental concept in secondary-level calculus courses, often pose conceptual challenges for 

students (Orton, 1983; Sofronas et al., 2011). This study aims to address the issue by exploring effective conceptual 

teaching strategies, such as providing real-world contexts, which have been shown to enhance student understanding, 

motivation, and learning outcomes. Approaches that incorporate visual, tangible, and problem-solving elements align with 

research on meaningful learning and cater to diverse cognitive styles (Drijvers et al., 2016; NCTM, 2000). These strategies 

not only establish a strong foundation for further calculus topics (Huang, 2011) but also foster applied mathematical 

thinking, essential for developing 21st-century skills and preparing students for STEM fields (NRC, 2012). Furthermore, 

the insights gained from this topic can inform secondary-level teacher training programs and the development of 

instructional materials that promote conceptual understanding (Confrey & Lachance, 2000; Chauvot, 2009). The strategies 

discussed may also enhance comprehension of other challenging mathematical concepts (Lobato et al., 2012). Additionally, 

early exposure to applied perspectives can potentially increase long-term participation in STEM fields (Maltese & Tai, 

2010). This study focus on addressing the recommendations of researchers regarding conceptual teaching that contributes 

to improved learning outcomes and holds significant relevance (NCTM, 2014).  

 

The strategies discussed align with pedagogical frameworks such as embodied cognition and situated learning 

theories (Lakoff & Nunez, 2000). From a practical perspective, offering a comprehensive understanding of effective 

conceptual approaches for derivative holds great significance for multiple reasons. Firstly, it can inform secondary-level 

teacher education programs regarding constructivist teaching methods that are supported by research (Confrey & Lachance, 

2000) that plays a crucial role in developing foundational understandings and applying conceptual approaches in teaching 

(Brown, 2019). Secondly, the strategies and examples discussed have implications for designing curriculum materials that 
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align with standards and develop both conceptual and procedural fluency with derivative (NCTM, 2014). Such resources 

are important for classroom instruction. Thirdly, enhancing conceptualization may help reduce failure rates in calculus 

courses by strengthening students' knowledge bases, thereby improving learning outcomes. Lastly, a deeper and earlier 

comprehension of derivative could better prepare students for subsequent STEM courses that rely on a solid understanding 

of calculus foundations (Huang, 2011). 

 

Finally, adopting an applied view of mathematics may help change mindsets and increase long-term participation 

in STEM fields by demonstrating the relevance of mathematical concepts (Maltese & Tai, 2010). This study contributes to 

the goals of improving STEM education. In a broader sense, tackling challenges by employing conceptually-grounded 

theoretical frameworks and empirically-supported strategies holds immense importance in mathematics education. It not 

only enhances learning outcomes but also contributes to students' future success across various disciplines. 

 

Objectives of the Study 

The objectives of the study are as follows. 

(i) To conceptualize the concept and meaning of derivative. 

(ii) To explore the different strategies for conceptualizing derivative. 

(iii) To identify real-life applications of derivative and encourage to apply in their daily life situation. 

 

METHODOLOGY 
This study utilizes a review-based research design to conceptualize the meaning and applications of derivative. 

The overarching goal is to synthesize approaches that enhance student understanding of derivative and their practical 

applications in daily life. The design focuses on conceptual change through multiple representations, real-world modeling, 

and technology-enhanced learning approaches. It examines the best ways to develop conceptual understanding of derivative 

to the learner exploring the relationship between intuitive mathematical knowledge, practical applications, and real life 

applications. 

 

RESULTS AND DISCUSSION 
Conceptual Understanding of Derivatives 

The derivative can be mathematically defined as the slope of the tangent line to a curve at a specific point, allowing 

us to describe instantaneous rates of change (Orton, 1983). However, students often initially interpret the derivative in a 

procedural manner without connecting it to practical meaning (Drijvers et al., 2016). Researchers have emphasized the 

importance of contextually-based and conceptually-driven instruction for the derivative, which helps students understand 

the significance of the mathematical process (Sofronas et al., 2011; White, 1961). Approaching the derivative conceptually 

through visual, physical, and applied perspectives has proven to support student understanding. By providing meaningful 

applications, we can anchor the abstract concept of the derivative to everyday scenarios and motivate students by 

demonstrating its relevance (Kember et al., 2008). For instance, applications involving velocity, acceleration, or marginal 

cost/benefit analysis establish tangible connections (Orton, 1983). Everyday contexts related to motion, such as an object's 

speed or the slope of a hilly road, have been particularly effective in building conceptual understanding of the derivative 

(White, 1961).  

 

This overview aims to synthesize research-based strategies for teaching the derivative conceptually through 

practical applications. These strategies focus on visual, physical, and applied problem-solving approaches. Integrating such 

methods into secondary mathematics instruction has the potential to enhance students' comprehension and their recognition 

of the real-world significance of this challenging concept in calculus. The overview has briefly discussed some major ways 

of conceptualizing the derivative. 

 

Conceptualizing Derivatives through Intuitive Understanding of Slope and Rate of Change 

The conceptualization of derivative through an intuitive understanding of slope and rate of change is a 

fundamental approach in calculus. Several studies and educational resources support this pedagogical strategy. Dilling & 

Witzke (2020) emphasizes the importance of connecting derivative to the intuitive concept of slope. They argue that 

understanding derivative as slopes of tangent lines allows students to develop a more meaningful and coherent 

understanding of the concept. This approach aligns with the geometric interpretation of derivative, where the slope 

represents the rate of change at a specific point on the function's graph. Similarly, Thompson (1994) explores the notion of 

rate of change as a foundational concept for understanding derivative. Thompson suggests that the intuitive understanding 

of rate of change, such as velocity or growth rates, can serve as a bridge to grasping the concept of derivative. By relating 

derivative to these familiar real-world contexts, students can develop a deeper conceptual understanding. 

 

Stewart (2015) also emphasizes the intuitive understanding of derivative through slope and rate of change. Stewart 

presents the graphical interpretation of derivative, highlighting the connection between the slope of a tangent line and the 
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instantaneous rate of change at a point. This graphical approach provides a visual representation that aids students in 

conceptualizing derivative. Furthermore, Anton et al., (2012) emphasis on intuitive understanding of derivative through 

rate of change. They highlight the interpretation of derivative as rates of change in various contexts, such as motion, 

population growth, and economics. This approach helps students connect derivative to real-world applications and 

enhances their conceptual understanding. 

 

Intuitive understanding of slope and rate of change is a widely supported approach in the conceptualization of 

derivative. Studies by Dilling & Witzke (2020) and Thompson (1994) highlight the importance of connecting derivative to 

slope and rate of change, while Stewart (2015) and Anton et al., (2012) provide instructional resources that emphasize this 

intuitive approach. For example, Figure 1 describes conceptualizing derivative through a graphical representation using a 

population growth scenario (i), tangent to the curve at point A (ii) and different positions of tangent lines (iii). The 

instantaneous rate of change in population at time 3 days when population is 500 can be represented as the slope of the 

tangent line to the population curve at point (3, 500). Drawing the tangent line relates its slope to the definition of derivative, 

aiding intuitive understanding. Using population growth anchors the concept. Approximating the slope also reinforces the 

definition of derivative as a limit. This graphical approach supports conceptualization through visualization and application 

to a concrete scenario. Thus, establishing connections between slope and rate of change in real-world contexts enables 

students to cultivate a profound and significant comprehension of this fundamental concept in calculus. 

 

 
Figure 1: Graphical Representation of the Curve with Slope and Rate of Change 

 

Conceptualizing Derivative through Definitions and Notations 

Definitions of derivatives lay the foundation for students to conceptually understand this important concept of 

calculus. Derivative can be defined formally as the limit of the average rate of change (Larson & Edwards, 2014). 

Specifically, the derivatives at a point 𝑥 = 𝑎 for a function 𝑓(𝑥) is defined as: 

𝑓′(𝑎) = lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
 

 

Where ℎ approaches zero and the fraction 
𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
 represents the average rate of change between the points 

[𝑎 + 𝑓(𝑎)], and [𝑎 + ℎ, 𝑓(𝑎 + ℎ)] (Thompson, 1994). Connecting this definition to graphical representations of slopes 

allows students to interpret derivatives visually as the slopes of tangent lines (Orton, 1983). 

 

The derivative of a function 𝑓(𝑥) with respect to 𝑥, written as 𝑓′(𝑥), is defined as the limit used to calculate the 

slope of the tangent line at each point. The domain of the derivative function 𝑓′(𝑥) consists of all the 𝑥-values where this 

limiting process is defined. Geometrically, 𝑓′(𝑥) represents the slope of the tangent line to the graph of 𝑓(𝑥) at the point 

[𝑥, 𝑓(𝑥)] (Figure 2). 
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Figure 2: Graphical Representations of Derivative with Definition and Notations 

 

In Figure 2, the slope of chord 𝑃𝑄 = tan 𝑄𝑃𝐶 = 𝑡𝑎𝑛 =
𝑄𝐶

𝑃𝐶
=

𝑓(𝑎+ℎ)−𝐹(𝑎)

ℎ
. As Q→P, then h→0 and chord PQ 

will become tangent at P. 

 

Notation plays an important role in solidifying conceptual understanding of derivatives. Using derivative notation 

such as 𝑓′(𝑎) emphasizes that the derivative is a function in itself rather than merely the slope at a point (Larson & 

Edwards, 2014). Symbolic conventions like 
𝑑𝑦

𝑑𝑥
 or 

𝑑𝑓

𝑑𝑥 
 (Leibniz notation), 𝑓′(𝑥)  or  𝑦′ (Lagrange notation), 𝑦̇ (Newton 

notation), Dy (Euler notation), etc. denoting the derivative of a function 𝑦 with respect to 𝑥 help students understand 

derivative as ratios describing instantaneous rates of change (Huang, 2011) (Figure 3). 

 

 
Figure 3: Graphical Representation of Derivative of a Function with Increment x and ∆𝐲 

 

In Figure 3, the slope m of a secant line is written in terms of 𝑓(𝑥) at points 𝑥 and 𝑥 + ∆𝑥, representing the change 

in 𝑦-values over the change in 𝑦-values 
Δ𝑦

Δ𝑥
. Imagine that ∆𝑥 approaches zero, where the slope is the exact tangent line 

rather than a secant approximation. This thought exercise reinforces the definition of derivative as a limiting rate of change, 

encouraging students to mentally link graphical and analytical slopes involving limits. Relating the derivative to the 

familiar rise-run ratio also intuitively anchors the concept. This visualization effectively guides students to build an 

understanding of differentiation from the first principles of limits and graphical interpretations. Exploring how different 

notations link to graphical, numeric, and real-world interpretations of derivatives aids conceptualization. Overall, formally 

defining derivatives while highlighting connections to multiple representations supports a coherent conceptual framework 

(Erens & Eichler, 2015). 
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Conceptualizing Derivative through Differentiation Rules  

Memorizing differentiation rules alone does not develop a conceptual understanding of derivatives. However, 

when accompanied by strong foundations in definition, notation, limits, and graphical/numerical representations, rules can 

reinforce conceptualizations (Ferrini-Mundy & Graham, 1994). For example, exploring the Power Rule - that the derivative 

of 𝑥𝑛 is 𝑛𝑥𝑛−1 connects to the definition of derivative as limits of difference quotients and visual representations of slopes 

(Huang, 2011). Considering how differentiation rules arise from analytic definitions builds coherence (Larson & Edwards, 

2014). 

 

Linking rules to multiple perspectives strengthens flexible knowledge. Investigating how graphical behaviors 

follow from rules, like maximum/minimum points relating to 𝑓′(𝑥) = 0, supports function thinking (Erens & Eichler, 

2015). Applying rules to real-world word problems allows conceptual use beyond symbolic manipulations. Working 

through detailed derivations of common rules from first principles, like the Chain Rule, helps demystify previously 

"opaque" procedures (Thompson, 1994). Relating new rules to conceptual schemas forged from definitions/limits enhances 

understanding of rote drilling (Orton, 1983). Similarly, we can show the relation of the Product Rule and the Quotient Rule. 

Overall, differentiation rules foster mastery when coupled with rich, linked conceptual foundations (Rassmussen, 2001). 

Thus, incorporating visual representations during the teaching and learning process, students can develop a deeper 

conceptual understanding of derivative and differentiation rules. Visualizations help bridge the gap between abstract 

mathematical concepts and their real-world applications, making the learning experience more engaging and meaningful. 

 

 
Figure 4: Graphical Representation of Maxima and Minima and Rate of Change 

 

In Figure 5, the model presents an example of a chain rule. The composition of functions 𝑓 and 𝑔 occurs when 

the output of 𝑔 is used as the input for 𝑓. The range of 𝑔 must be contained in the domain of 𝑓 for this composition to 

work. If 𝑥 represents the input to 𝑔, 𝑔(𝑥) is the output, which becomes the input to 𝑓, resulting in 𝑓(𝑔(𝑥)). The function 

ℎ represents the transformation from 𝑔′s input to 𝑓′s output. The derivative of ℎ measures the change in ℎ′s output with a 

small change in its input, or equivalently, the change in 𝑓]s output with a change in 𝑔′s input. The chain rule calculates 

this derivative by tracing the chain of events from the input of 𝑔 to the output of 𝑓. Changing the input to 𝑔 affects the 

output of 𝑔, which in turn affects the input to 𝑓, resulting in a change in 𝑓′s output. The derivative of ℎ′ is the ratio of the 

change in the faceted sphere to the change in the sphere. The derivative of 𝑔 is the ratio of the change in the cube to the 

change in the sphere, and the derivative of 𝑓 is the ratio of the change in the faceted sphere to the change in the cube. By 

multiplying the ratios of the derivatives of 𝑔 and 𝑓, the factors corresponding to the change in the cube cancel out, yielding 

the ratio corresponding to the derivative of h. Using "d" to denote "change in," we can express the chain rule result in terms 

of the function machine inputs and outputs. 

 

 
Figure 5: Graphical Representation of a Model of Chain Rule 
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Conceptualizing Derivative through Concrete Examples and Graphical Representations  

Using concrete examples that emphasize physical phenomena and contextual applications helps students grasp 

the meaning and significance of derivatives (Jones, 2017). For instance, exploring instantaneous velocity from kinematic 

equations or acceleration/slopes of position-time graphs fosters intuitive links between concepts (Thompson, 1994). 

Graphical approaches are essential for visualizing derivatives. Relating the tangent line approximation to the slope of a 

curve at a point advances understanding of derivatives as rates of change (Orton, 1983). Comparing graphs of functions 

and their derivative illustrates general properties like maximums relating to where the slope is zero (Erens & Eichler, 2015). 

Figure 6 presents the graph of concrete examples (i), (ii) and a model of instantaneous speed (iii). 

 

 
Figure 6: Graphical Representation of Maxima and Minima and Rate of Change 

 

The visualization of graphical representation can make more interactive and dynamic exploration of functions and 

connections between representations using graphing technology (Drijvers et al., 2016). Tools like Geometer's Sketchpad, 

Geogebra, or Desmos let users visualize tangent lines while zooming or manipulating sliders. This dynamic approach 

promotes flexibility and applied thinking over memorization (Park & Leatham, 2017). Seeing connections between graphs, 

tables, equations, and descriptions provides reinforcement from complementary perspectives (Huang, 2011). 

Representational flexibility aids transfer to new contexts or strategy selection for diverse problems (Deliyianni et al., 2016). 

Overall, concrete examples combined with graphical and dynamic visualization fosters intuitive, applicable 

conceptualization of derivatives. Graphical representations have been shown to support the conceptualization of derivatives 

(Sofronas et al., 2011). Students can analyze graphs to qualitatively reason about rates of change and link graphical 

behavior to features of the original function (Chauvot, 2009). The identification of increasing and decreasing intervals in a 

function can be accomplished by analyzing the sign of its derivative over a given interval. The advent of graphing 

technology has revolutionized the way students can interactively visualize derivatives by manipulating functions and 

observing instantaneous alterations in both the function's graph and its derivative (Drijvers et al., 2016). This technological 

advancement provides a dynamic and intuitive platform for students to explore the behavior of functions and deepen their 

understanding of calculus concepts. As concluded by (Chauvot (2009), the students engaging in graphical analysis tasks 

promoted conceptual understanding beyond procedural fluency.  

 

Similarly, concrete manipulatives offer another mode for visualizing and building intuition about derivatives 

(Chatain et al., 2022). For instance, using motion detectors or slinkies to capture velocity or acceleration as a "physical 

derivative." Such manipulative models have prompted students to reason about quantitative and qualitative attributes of 

derivatives in applied contexts (Kordosmeier et al., 2019). Likewise, real examples of costs and benefits make connections 

between abstract ideas and real-world use. It provides multiple ways like physical demonstrations to represent the 

relationships between changes in costs and benefits. 

 

Conceptualizing Derivative through Employing Real-world Context 

Using real-world contexts helps students understand how derivative models apply to situations (Jones, 2017). 

Exploring velocity, acceleration, or exponential growth in biology, physics or economics fosters relevance and motivation 

(Thompson, 1994). Relating derivatives to many practical examples shows their broad utility in modeling rates of tangible 

processes (Ferrini-Mundy & Graham, 1994). Investigating optimization or related rates problems situated in authentic 

scenarios promotes active, inquiry-based learning over mere mechanics (Huang, 2011). Graphing calculators or computer 

programs allow simulations and visualizations that reinforce theoretical understandings with dynamic, interactive 

representations (Erens & Eichler, 2015). Geometer's Sketchpad or Desmos enables observing changing graphs interactively 

to build flexible thinking (Drijvers et al., 2016). Overall, embedding derivatives within meaningful practical applications 

provides a purpose for learning beyond standardized exams. This fosters ownership and retention by demonstrating 

relevance to students’ worlds (Jones, 2017).  
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Solving contextual word problems is critical for students to attach conceptual meaning to derivatives (Sofronas et 

al., 2011). Exercises involving concepts like velocity, acceleration, or profit maximization have engendered an 

understanding of derivatives as instantaneous rates and tools for optimization. For example, formulating and solving word 

problems involving real-world scenarios like traffic flow, construction mechanisms of suspension bridges, staircase, etc. 

can be used to strengthen the conceptualization of derivatives for students. Derivatives, which are mathematical tools that 

measure rates of change, are actually used in everyday applications instead of just abstract calculations (Yang, 2016). 

Figure 7 presents the different real-world models for conceptualizing derivatives. 

 

 
Figure 7: Graphical Representation of Images in the Real-world Context 

 

Defining Derivative 

The derivative of a function 𝑓(𝑥) at a point 𝑥, denoted by 𝑓′(𝑥), is defined as the limit of the average rate of 

change of 𝑓  as ∆𝑥  approaches 0. It represents the instantaneous rate of change of the function with respect to the 

independent variable (Stewart, 2015). Derivatives allow mathematicians to analyze rates of change, optimal values, 

linearization, and other properties that help understand naturally occurring phenomena (Erens & Eichler, 2015). They are 

foundational concepts in calculus and underlie principles of physics, engineering, economics, and other quantitative 

disciplines (National Research Council, 2012). Historically, the development of derivative concepts was fundamental to 

the emergence of calculus and its applications across sciences. This established much of the foundation for modern 

quantitative fields. (Boyer & Merzbach, 1989). Derivative can be defined from various perspectives. 

 

Geometrically, the derivative indicates the slope of the tangent line to the function's graph at any point (Figure 1). 

Symbolically, derivative gives algebraic rules to determine instantaneous velocities and incremental change from functions 

defined by formulas (Huang, 2011) (Figure 2(ii). Graphically, derivatives permit identifying maxima, minima, and points 

of inflection to optimize target quantities (Figure 4(i). Their uses range from modeling simple kinematic situations to 

solving complex optimization problems (Hyer & Gardner, 2007). Computationally, derivatives establish procedures for 

taking derivatives of basic and composite functions using rules like the power, constant multiple, sum, difference, and 

quotient rules. This allows analysts to mathematically model real-world situations (Larson & Hostetler, 1994). 

Conceptually, derivative formalizes the intuitive notion of instantaneous rate of change and operationalizes it 

mathematically. This links calculus to physical phenomena and geometric relationships (Orton, 1983). Pedagogically, 

derivatives are a threshold concept that students must master to progress in calculus. Research finds transforming student 

preconceptions is crucial for comprehensive understanding (Lobato et al., 2012). 

 

Strategies for Conceptualizing Derivative  

Graphical approaches play a crucial role in interpreting derivatives as rates of change from geometric and numeric 

perspectives, aiding in the development of intuitions for derivatives as slopes of tangent lines. Dynamic graphing 

technology facilitates interactive exploration of how derivatives change with functions (Drijvers et al., 2016). Real-world 

connections enhance conceptual understanding by applying derivatives to contextual problems involving velocity, 

acceleration, maximization, and other applications promoting student engagement (Schwalbach & Dosemagen, 2010). 

 

Utilizing multiple representations simultaneously, including numeric, graphical, symbolic, and verbal forms, 

supports translational reasoning between different representations (Huang, 2011). Multidimensional perspectives reinforce 

accurate conceptual models (Brown, 2019). Limit-based definitions formalize derivative formulas, while numeric and 

graphical approaches provide intuitive understanding (Orton, 1983). Bridging intuitive and formal aspects fosters more 

robust cognition of this essential concept (Drijvers et al., 2016). Tangible manipulatives, such as simulations of motion, 

rates of slope, stretching/shrinking, and embodied metaphors, make derivatives more tangible and enhance conceptual 

understanding (NCTM, 2000). Physical experiences further solidify conceptual understanding (Chauvot, 2009). Active 

learning approaches prioritize conjecture, justification, and collaborative sense-making over routine skill-building (Lobato 

et al., 2012). Inquiry-based activities promote deeper engagement compared to traditional instruction (Khasawneh et al., 

2023). 

 

Several strategies can be employed to conceptualize derivatives effectively. Problem-solving contexts, involving 

real-world scenarios, require the application of derivative concepts and rules, improving understanding of their practical 

uses. Verbal explanations, where students articulate and reflect on their derivative ideas, aid in identifying and addressing 
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misconceptions (Chauvot, 2009). Metaphors and analogies, relating derivatives to familiar actions like velocity or units 

flowing in/out, facilitate initial comprehension of rates of change and sustain interest (Lakoff & Nuñez, 2000). Modeling 

mathematical thinking by thinking aloud during derivative problem-solving demonstrates expert reasoning processes, 

allowing students to internalize holistic approaches (Lobato et al., 2012). Identifying and addressing students' pre-existing 

ideas and misconceptions helps frame instruction relative to their zones of proximal development (Confrey, 1990). 

Technology, such as dynamic function graphs, sliders, and interactive simulations, provides dynamic and visual tools for 

reasoning about derivatives without relying heavily on symbolic manipulation (Yang & Baldwin, 2020). Some major 

strategies for conceptualizing derivatives have been discussed below. 

 

Intuitive Understanding of Slope and Rate of Change 

The slope is intuitively grasped from observing hills, where steepness matches rise over run. This informal sense 

of faster or slower change provides a basis to define the rate. Rate of change can be used in everyday activities like driving 

distances over time, and linking informal ideas to symbols. Comparing scale diagrams nurtures seeing constant rates as 

straight lines (Lakoff & Nuñez, 2000). Research has shown that when it comes to understanding slope, gestures can convey 

meaning before formal mathematical symbols, indicating that physical understanding comes before the development of 

formal skills (Rasmussen et al., 2004). Mathematics builds upon qualitative observations of changing quantities in various 

contexts, as these experiences serve as a foundation for further mathematical understanding. Intuition develops in other 

ways as well. For example, comparing the crawling speeds of babies and adults can provide an intuitive feel for slopes 

(Lakoff & Nunez, 2000). Real-world examples such as the steepness of hiking trails or the slowing down of rolling balls 

connect rates to tangible objects (Orton, 1983). Judging winners in a footrace involves comparing changes, and this kind 

of informal problem-solving precedes the use of mathematical symbols (Confrey, 1990). Experiences like these help 

students develop an intuitive understanding of concepts like slope and derivative, which are later expressed more precisely 

in mathematical terms. 

 

Visualizing Derivative through Graphs and Geometric Interpretations 

The slope of a tangent line visually shows the instantaneous rate of change or derivative at a point (Orton, 1983). 

As the interval near a point narrows, the chord slope approaches the tangent slope. Graphing polar functions allows seeing 

velocity and direction changes. Relating derivatives to tangent slopes helps understand kinematics concepts like 

acceleration (Erens & Eichler, 2015). The area under curves intuitively links to accumulated quantities over time, 

supporting interpreting derivative as rates given by slopes (Lobato et al., 2012). Gaining an understanding of derivatives 

as limits and their practical optimization applications becomes clearer when observing tangent lines representing small 

changes (Thompson & Silverman, 2008). Manipulatives like slinky springs show derivative geometrically through distance 

changes over time (Larson & Farber, 2004). Motion maps overlaying graphs develop system thinking for modeling 

dynamics (Sherin, 2001). Graphs help visualize derivatives through techniques like manipulating sliders online (Drijvers 

et al., 2016), connecting areas to changes, and animating tangent lines (Heid, 1988). 

 

Exploring the Concept of Instantaneous Rates of Change of a Curve 

The idea of an instantaneous rate of change arises from considering what happens as the measurement interval 

approaches zero (Thompson, 1994). Exploring varying intervals on motion graphs intuitively develops the derivative as 

the limiting average rate (Ferrini-Mundy & Graham, 1994). Graphing calculator software displaying chords and tangents 

fosters examining chord approximations converging to the limit. Manipulatives like marbles on ramps relate physical rates 

to their graphical representation as slopes (McDermott et al., 1987). Comparing tables, graphs, and rules coordinates 

multiple representations for more coherent conceptualization (Orton, 1983). Additional conditions can also help explore 

instantaneous rates. Actively manipulating graphs with sliders dynamically observes how slopes change and form the 

tangent line (Drijvers et al., 2016). Relating qualitative observations of changing quantities over infinitesimal intervals to 

limited definitions links intuitions and formalism (Davis & Vinner, 1986). Qualitatively comparing speeds in contexts like 

racing supports instantaneous ideas (Confrey & Smith, 1995). Relating zooming microscopically to the limit process 

enriches physical intuitions (Thompson et al., 2014). These various representations foster exploring the instantaneous rate 

concept. 

 

Applying the Concept of Limits to Define Derivative 

The formal definition of the derivative is based on the limiting process of the average rate of change over 

narrowing intervals approaching zero, as described by Orton (1983). This concept can be explored by examining rates over 

varying intervals to develop intuition. Using graphing calculators to compute chord slopes and visualize their convergence 

to the tangent slope reinforces the limited interpretation of the derivative. It is critical to relate quantitative and qualitative 

notions of instantaneous rate to the limit definition in order to foster coherent understanding, as emphasized by Ferrini-

Mundy and Graham (1994). This understanding becomes particularly important when analyzing examples where average 

and instantaneous rates differ, such as at corners, since limits are necessary to precisely quantify such behavior (Drijvers 

et al., 2016). Investigating limits numerically and graphically before addressing them symbolically helps students connect 

intuitions to formal definitions (Huang, 2011). Using different representations can help with the concepts. Looking at 
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limits, rates of change, and slopes together connects them (Thompson, 1994). Other ideas support applying limits to 

derivatives. Students can watch chords move closer to tangents using software (Erens & Eichler, 2015). Physical examples 

where things get closer as changes shrink give meaning to limits (Larson & Farber, 2004). Engaging in numerical 

calculations to approximate limits adds a concrete dimension to the concept (Swinyard, 2011). Comparing derivatives of 

commonly encountered functions helps solidify understanding (Jones, 2017). Employing multiple perspectives to 

comprehend these ideas reinforces the fundamental definition of the derivative as a limit. 

 

Interpretation of Derivative 

Derivatives have various interpretations that shed light on their meaning and significance. The derivative can be 

interpreted and understood from various perspectives that build students' conceptualization. From a rate of change view, it 

represents the instantaneous slope of the tangent line at a point on a function's graph (Orton, 1983). Geometrically, this 

connects to visualizing the derivative as the slope of the tangent line. Derivatives also model real-world contexts through 

physical interpretations like velocity or profit rates (Thompson, 1994). Numerically, it describes how quickly a function is 

increasing or decreasing (Ferrini-Mundy & Graham, 1994). Analytic uses involve finding stationary points and inflection 

points. Procedurally, students apply derivative rules and formulas computationally or through implicit differentiation of 

more complex functions (Drijvers et al., 2016; Jones, 2017). Locally, it approximates linear behavior near a point and 

depicts incremental changes for optimization and sketching (Larson & Edwards, 2014). Approximations in mathematics 

often utilize tangents represented in linear form (Drijvers et al., 2016). Symbolic calculations involve interpreting rules 

and following specific steps (Huang, 2011). However, to achieve flexible application, it is crucial to develop a 

comprehensive conceptual understanding that connects different representations (Thompson, 1994). 

 

Applications of Derivatives in Daily Life for Secondary-Level Mathematics Students 

Secondary students encounter numerous real-life applications of derivatives in their day-to-day experiences, 

which can serve as a source of motivation for learning about derivatives (Thompson & Silverman, 2008). Here are some 

brief examples of real-life applications that secondary-level students may encounter: 

 

Physics 

Derivatives are used to analyze the motion of objects, such as calculating velocity, and acceleration, and 

determining the behavior of moving objects (cars, projectiles, etc.). They are fundamental in understanding concepts like 

kinematics and dynamics (Larson & Edwards, 2014). 

 

Sports and Athletics 

Derivative is used in sports analysis to study the performance of athletes. It can be applied to analyze factors like 

speed, acceleration, and optimal strategies in sports such as track and field, swimming, and cycling (Hyer & Gardner, 

2007). 

 

Economics and Business 

Derivatives play a crucial role in economics and finance. It is used to model and analyze cost, revenue, and profit 

functions, optimize production and pricing strategies, and understand the behavior of financial markets (Orton, 1983; 

Rasmussen, 2001). It is also used to analyze investment strategies and calculate interest rates. 

 

Engineering 

Derivatives can be used in various engineering fields to analyze rates of change, optimize designs, speed, and 

efficiency of machines, and understand the behavior of physical systems. They are applied in areas such as mechanical 

engineering, electrical engineering, and civil engineering. 

 

Medicine and Biology 

Derivative is used in medical and biological research to model physiological processes, model the spread of 

diseases, analyze drug concentration in the body, and understand physiological processes (Drijvers et al., 2016). It is used 

to analyze the rate of change in biological systems and study population dynamics. They are used in fields such as 

pharmacology, epidemiology, and biomechanics. 

 

Computer Science 

In the realm of computer science, the derivative finds valuable applications, especially in domains like machine 

learning, data analysis, and optimization algorithms. It plays a key role in optimizing algorithms, analyzing data structures, 

and comprehending the behavior of computer programs (Huang, 2011). By leveraging the power of derivatives, computer 

scientists can enhance the efficiency and effectiveness of computational systems, enabling advancements in various 

technological fields. 
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Environmental Science 

The derivative serves as a valuable tool for modeling and analyzing environmental systems, encompassing areas 

such as the spread of pollutants, examining rates of change in ecological dynamics, and assessing the impacts of climate 

change. By employing derivatives, researchers and scientists gain insights into the intricate workings of environmental 

processes, enabling a better understanding and prediction of complex phenomena (Thompson, 1994). This knowledge is 

crucial for developing effective strategies for environmental management, conservation, and mitigating the effects of 

environmental changes. 

 

These are just a few examples of the wide-ranging applications of derivatives in daily life. Derivatives can be used 

in various fields to analyze rates of change, optimize processes, and understand the behavior of systems. It is used as a 

valuable tool for modeling and solving real-world problems. These applications can help students see the relevance and 

practicality of derivatives in their daily lives, making the concepts more meaningful and engaging. Teachers can incorporate 

other more real-life examples and problem-solving tasks to illustrate how derivative is used in various fields. 

 

CONCLUSION 
Building a strong foundation for derivatives is important. Prioritizing meaningful learning of foundational 

derivative concepts sets the stage for success in STEM and quantitative fields relying heavily on mathematical modeling 

and problem-solving skills. It is needed to develop a strong conceptual foundation of derivatives early in mathematics 

courses. Visualizing rates of change geometrically and intuitively grasping instantaneous behavior through limits lays the 

groundwork for future success. As mathematics progresses to more advanced topics relying on calculus, such as physics, 

engineering, and economics, a coherent and flexible understanding of derivatives cannot be underestimated. It is necessary 

to explore multiple linked representations of derivatives and build relationships between graphical, numeric, contextual, 

and symbolic aspects. Investigations involving real-world applications, graphical technologies, and physical models can 

enrich students' intuitions before introducing formal definitions. Ongoing assessments should evaluate conceptual 

understanding over rote manipulation of procedures to guide necessary remediation. 

 

There are several strategies that can be employed to build students' conceptual understanding of derivatives. 

Visualizing rates of change geometrically through graphs of functions and relating the slope of tangents to real-world 

contexts like speed and velocity lays an intuitive foundation. The formal definition of the derivative can be connected to 

intuitions about average and instantaneous change rates through limiting processes while approximating the derivative 

numerically and graphically. Developing understanding across multiple linked representations from graphical and numeric 

to analytic, verbal, and contextual perspectives reinforces comprehension as students translate between representations. 

Relating derivatives to experiences with magnification and interpreting them as describing the best linear approximations 

near a point also fosters intuition. Working through physical examples involving motion, costs, growth, and other relatable 

phenomena motivates learning by connecting mathematical concepts to real-world situations. Exploring functions through 

finding extrema, and inflection points, and investigating concavity while generalizing across diverse examples deepens 

conceptual insights. Procedural fluency with derivative rules is strengthened when algorithms and symbolic manipulations 

are linked tightly to their conceptual underpinnings. With a focus on building rich, flexible conceptual schemas through 

visual, numeric, contextual, and multi-representational perspectives, students can develop a strong foundation for success 

in calculus. 

 

It is recommended that curricula should allow for rich investigations of derivative concepts through visual, 

numeric, and applied contexts before introducing symbolic rules and algorithms. Students need time to develop intuitions 

about rates of change and their real-world interpretations through qualitative observations and technological explorations. 

Formal definitions are best introduced after intuitions have been built, making abstract concepts more meaningful and 

accessible. A greater emphasis on conceptual comprehension over procedural fluency in early learning can provide students 

with a stronger conceptual foundation to successfully apply and generalize derivative concepts. 
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