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Abstract: Novel heterogeneous catalysts development advances sustainable organic synthesis through performance 
enhancements and reduced environmental impact and recyclable catalyst systems. We developed biocompatible 

catalysts from natural and biodegradable materials for improving organic transformation capacities. Scientists developed 

sulfonated magnetic natural cellulose fibers for durable and eco-friendly usage as a solid acid catalyst before extensive 

characterization. The novel material showed its catalytic function in testing two multi-component reactions that 
generated biologically important heterocyclic scaffolds through bis(indolyl)methane formation as well as 3-

aminoimidazo[1,2-a]pyridine derivative production. The reactions finished within short periods to yield products 

effectively under environmentally friendly conditions. The catalyst showed exceptional stability since an external 

magnet efficiently recovered it following multiple cycles where no activity decrease was observed allowing continuous 
usage for organic synthesis operations. 

Keywords: Sulfonated magnetic natural cellulose fibers, bis(indolyl)methanes, imidazo[1,2-a]pyridines, reusable 
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INTRODUCTION 
The chemical synthesis of fine products benefits 

from heterogeneous catalysts because they offer superior 

environmental and economic advantages. Solid acids 

provide superior benefits when compared to traditional 
mineral acids through their easy operability along with 

their environmentally friendly behavior and non-harmful 

characteristics along with their economic benefits and 

ability to be reused and simple separation methods [1-3]. 
Many different solid acids are extensively utilized in 

chemical applications such as zeolite frameworks [4], 

clay [5], montmorillonite [6] and modified silica-

supported acids such as sodium bisulfate-silica, silica 
phosphoric acid, and silica sulfuric acid [7-9]. 

Biopolymers like chitosan and lignin and starch and 

cellulose have become promising materials for 

supporting catalysis which enlarges sustainable catalytic 

systems [10-14].  

 

Cellulose fibers from plant sources demonstrate 
increasing popularity as versatile and eco-friendly 

materials for heterogeneous catalysis [15, 16]. Derived 

from agricultural residues like sugarcane bagasse, these 

fibers consist primarily of cellulose, hemicellulose, and 
lignin. The use of plant-based cellulose fibers stands out 

as an eco-friendly versatile material for heterogeneous 

applications in catalysis [17, 18]. The hydroxyl and 

carboxyl functional groups present in cellulose fibers 
enhance their catalytic activity by facilitating 

interactions with active sites and improving their 

performance in various reactions. 
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The combination of chemical adaptability and 
high surface area together with catalytic stability 

properties makes cellulose fibers useful across diverse 

applications. Cellulose fibers demonstrate successful 

application in biodiesel production because they perform 
transesterification of waste oils and the esterification of 

feedstocks with high free fatty acids [19, 20]. 

Additionally, they have been explored for adsorption-

based heavy metal removal from wastewater, 
highlighting their multifunctional potential [20, 21]. As 

catalysts, cellulose fibers play a crucial role in 

sustainable biofuel synthesis, green chemical production, 

and other environmentally friendly transformations, 
contributing to the advancement of renewable catalytic 

systems [22, 23]. 

 

Multicomponent reactions (MCRs) are a 
powerful approach for synthesizing structurally diverse 

heterocyclic compounds, offering high atom economy, 

operational efficiency, and the ability to generate 

complex molecular architectures [24, 25]. They are 
useful in pharmaceutical research because their catalytic 

variants improve efficiency, selectivity, and reaction 

rates. Indole derivatives, which are found in many 

natural products, are very important in medicine [26, 27]. 
Bis(indolyl)methanes, which contain two indole units, 

exhibit diverse biological activities and pharmaceutical 
potential [28-30]. One typical way to make them is to use 

acid catalysts, either homogeneous or heterogeneous, to 

electrophilically replace indoles with ketones or 

aldehydes. 
 

The Groebke-Blackburne-Bienaymé (GBB) 

reaction described in 1998 allows the synthesis of fused 

imidazole derivatives by using an aldehyde mixture with 
2-aminoazines and isocyanides under acidic conditions. 

Imidazopyridines and their ring structure which fuses 

imidazole with pyridine show remarkable significance as 

biological compounds, especially 3-aminoimidazo[1,2-
a]pyridines [31, 32].  

 

The research examines the synthesis and 

characterization process of sulfonated magnetic natural 
cellulose fiber (MNCF-SO₃H) microparticles (MPs) for 

use as a new acid catalyst. Processing this natural 

cellulose fiber required grinding it into a homogeneous 

substance before treating it with basic solution to remove 
lignin and inorganic contamination. The researchers 

applied magnetite nanoparticles onto the MNCF 

followed by chlorosulfonic acid functionalization to 

produce MNCF-SO₃H MPs (Scheme 1). 

 

 
Scheme 1: The synthesis procedure of MNCF-SO3H 

 

MATERIALS AND METHODS 
Different analysis techniques were used for 

assessing the catalyst's structural and physicochemical 

properties. X-ray diffraction (XRD) analysis was 

conducted using STOE & CIE STADI P equipment with 

scintillation detection and secondary monochromator 

technology under Cu Kα radiation condition (λ = 0.1540 
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nm). Surface morphology analysis happened through use 
of a Philips XL30 ESEM environmental scanning 

electron microscope (SEM). Testing thermal stability 

involved the use of TGA upon Scinco STA 1500 

simultaneous thermal analyzer under an air environment 
with a 10 °C min⁻¹ heat ramp. Samples were measured 

for their melting points by an Electrothermal IA9100 

melting point apparatus through an uncorrected method. 

The laboratory implemented Shimadzu IR470 
spectrometer to obtain Fourier-transform infrared (FT-

IR) spectra.  

 

Synthesis of Natural Cellulose Fiber Microparticles 
(NCF): 

A blender initiated the fragmentation process of 

sugarcane bagasse which led to obtaining cellulose fiber 

microparticles through grinding. A (4.0 g) weight of 
microparticles got suspended in (100 mL) of 0.1 M 

NaOH solution when mixing occurred at room 

temperature for (6) hours. After the treatment stage the 

particles underwent filtration to obtain separation and 
further cleaning with water until dried under pressured 

conditions at (70 °C). 

 

Preparation of Magnetic Cellulose Fiber Microparticles 
(MNCF): 

The synthesis of magnetic cellulose fiber 

microparticles happened through a co-precipitation 

method which occurred in water. The solution contained 
(4.0 g) natural cellulose fiber microparticles and (0.2 g) 

iron(II) chloride tetrahydrate and (0.54 g) iron(III) 

chloride hexahydrate in (50 mL) distilled water while 

stirring (1) hour. The system received gradual addition 
of (11) pH-adjusting 25% ammonium hydroxide solution 

at (60 °C) while maintaining stirring for one additional 

hour. The procedure finished with magnetic cellulose 

fiber microparticles which was separated through 
external magnet use before using distilled water and 

ethanol washes followed by drying at (80 °C). 

 

Preparation of Sulfonated Magnetic Cellulose Fibers 
(MNCF-SO₃H): 

Stirring (1.0 g of magnetic NCF microparticles 

with (20 mL chloroform solution at (0 °C) marked the 

first step in preparing sulfonated magnetic cellulose fiber 
microparticles. Chlorosulfonic acid (0.5 mL) received 

dropwise addition to the mixture while it returned to 

reach room temperature after (30) minutes. An additional 

(1) hour of stirring enabled the reaction process to finish. 
After adding chlorosulfonic acid dropwise to magnetic 

NCF in chloroform (0 °C) the mixture reached room 

temperature as MNCF-SO₃H microparticles formed 

next. The microparticles received an external magnetic 
separation followed by triple methanol washing before 

drying at room temperature. 

 

Synthesis of Bis(indolyl)methanes: 
The reaction to make bis(indolyl)methanes 

proceeded through the simultaneous mixing of 4-

(Benzyloxy)benzaldehyde (0.10 g, 0.50 mmol), 2-
Methylindole (0.13 g, 1.00 mmol) with the catalyst (0.01 

g, 1.25 mol%) at room temperature under solvent-free 

conditions for 10 to 15 minutes. The reaction's 

advancement was checked through TLC by running it on 
a solution of ethyl acetate and n-hexane eluent. The 

reaction mixture received chloroform addition (2 × 5 

mL) following completion and the catalyst was extracted 

through external magnetic force. The authors used 
reduced pressure to evaporate the chloroform phase until 

they obtained pure crude product. Death of the product 

required purification through recrystallization from 

ethanol mixed with water. 
 

Synthesis of 3-Aminoimidazo[1,2-a]pyridines: 

A 2-Amino-6-methylpyridine (0.10 g, 1.00 

mmol) and benzaldehyde (0.10 g, 1.00 mmol) with 
cyclohexyl isocyanide (0.10 g, 1.00 mmol) solution was 

prepared in (5 mL) of water. The following reaction 

mixture contained MNCF-SO₃H (0.03 g, 7.50 mol%) as 

an addition. The reaction mixture stirred at (60 °C) for a 
period between 40 to 60 minutes. The reaction progress 

evaluation used thin-layer chromatography with ethyl 

acetate and n-hexane as the elution mixture. The mixture 

required cooling to reach room temperature after 
obtaining proper TLC results for complete reaction. 

Separating the catalyst became possible with an external 

magnet while extracting the product worked through 

ethyl acetate. The product resulted from concentrated 
crude material after organic phase separation through 

vacuum pressure-evaporation before purification by 

ethyl acetate as well as ethanol recrystallization. 

 

RESULTS AND DISCUSSION 
Sulfonated magnetic cellulose fibers (MNCF-SO3H) 

structural characterization 
FTIR Analysis of NCF and MNCF-SO₃H Microparticles: 

The FTIR spectra of both NCF and MNCF-

SO₃H microparticles are shown in Fig. 1. The bands 

observed at 1279, 1360, and 1442 cm⁻¹ correspond to C–
H bending, CH wagging, and O–H bending, respectively. 

The glucose ring vibrations appear between 1000 and 

1100 cm⁻¹, while the C–O bond stretching in the C–O–C 

and C–OH groups is detected between 1014 and 1070 
cm⁻¹. A broad band around 3465 cm⁻¹ is observed, 

corresponding to the O–H stretching vibration. 

 

For MNCF-SO₃H, the FTIR spectrum shows 
the presence of new absorption peaks, indicating 

successful sulfonation and the incorporation of Fe₃O₄ 

nanoparticles. The bands observed at 645, 591, and 445 

cm⁻¹ are attributed to the stretching vibrations of Fe–O 
bonds. The peaks at 1175 and 1028 cm⁻¹ correspond to 

the stretching vibrations of SO₃H groups, and the band at 

620 cm⁻¹ is associated with the stretching of C–S bonds. 

An absorption peak at 3253 cm⁻¹ is related to the O–H 
stretching vibration, confirming the presence of ferric 

hydroxide in Fe₃O₄. 
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Figure 1: The FTIR spectra of the NCF (red) and MNCF-SO3H MPs (black) 

 
Fig 2 presents the XRD patterns of NCF 

microparticles and MNCF-SO₃H. As observed, strong 

peaks at 2θ = 21.16° and 16.27° are attributed to the 

crystalline structure of cellulose. In the MNCF-SO₃H 
pattern, additional diffraction peaks at 2θ = 30°, 35.5°, 

43°, 53.8°, and 62.5° correspond to the characteristic 

planes of cubic spinel Fe₃O₄. These results confirm the 

successful formation of Fe₃O₄ nanoparticles within the 

MNCF-SO₃H structure while preserving the cellulose 

framework throughout the magnetization and sulfonation 
processes. 

 

 
Figure 2: The [XRD] pattern of the NCF MPs and MNCF-SO3H 

 

The structural features become apparent in Fig 

3 through SEM images of NCF and MNCF-SO₃H 
microparticles. The NCF microparticles maintain a 

fibrous shape that measures approximately 5 

micrometers in diameter. The fibers show an exclusive 

combination of thin walls and smooth outer layer. The 

Fe₃O₄ nanoparticles successfully embed onto the tubular 

surfaces of MNCF-SO₃H microparticles. The TEM 
investigations show hollow microfiber structures having 

an inner diameter size close to 500 nm. Magnetite 

nanoparticles of less than 100 nm size disperse well on 

these fibers to achieve adsorption. 
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Figure 3: The SEM and TEM images of the NCF (top) and MNCF-SO3H MPs (down) 

 
The study used TGA analysis to confirm the 

microstructure of the produced microparticles. Fig. 4 

shows the TGA profiles of NCF together with sulfonated 

NCF (NCF-SO₃H) microparticles along with MNCF-
SO₃H microparticles. The weight reduction starting at 

room temperature reaches 120 °C because moisture 

together with volatile compounds evaporates. The 

decomposition of functional groups combined with the 
breaking up of the cellulose polymer matrix leads to an 

extra weight loss in NCF at 320 °C. The thermal 

decomposition profiles for NCF-SO₃H and MNCF-SO₃H 

match each other. 

 

Following sulfonation, an extra weight loss step 
appears below 200 °C in the TGA curve, suggesting the 

incorporation of SO₃H groups within the structure. By 

the end of the analysis at 800 °C, the residual mass varies 

among samples due to differences in Fe₃O₄ and SO₃H 
content. The TGA findings indicate that the final catalyst 

composition consists of approximately 47% Fe₃O₄ 

nanoparticles and 7% SO₃H relative to the total weight. 

 

 
Figure 4: The TGA curves of the NCF, NCF-SO3H and MNCF-SO3H MPs 
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Application of Sulfonated Magnetic Cellulose Fibers 
(MNCF-SO₃H) in Multi-Component Reactions 

To begin, we investigated the catalytic 

efficiency of this material in the synthesis of 

bis(indolyl)methanes through a pseudo three-component 
reaction. Optimization of the reaction parameters 

involved evaluating the influence of different solvents, 

catalyst dosages, and reaction durations on the formation 

of bis(indolyl)methane 3a, using indole 1 and 
benzaldehyde 2 as representative substrates. As outlined 

in Table 1, the highest yield was obtained when MNCF-

SO₃H microparticles (0.01 g) were used under solvent-

free conditions at ambient temperature (Table 1, entry 8). 
The reaction also proceeded effectively in water; 

however, a longer reaction time was required to achieve 

completion (Table 1, entry 6). 

 

 
 

To evaluate the catalytic performance of 

MNCF-SO₃H, its activity was compared with NCF-

SO₃H and MNCF microparticles. The remarkable 
efficiency of MNCF-SO₃H is primarily due to the 

cooperative interaction between Fe₃O₄ nanoparticles and 

sulfonic acid groups, which significantly enhances 

catalytic effectiveness. Additionally, the versatility of 

this reaction was investigated by utilizing various indole 

derivatives and aromatic aldehydes. These substrates 

included compounds with both electron-donating and 
electron-withdrawing substituents on the phenyl ring. 

The reaction proceeded efficiently, yielding 

bis(indolyl)methanes in high yields, as summarized in 

Table 2. 
 

Table 2: bis(indolyl) methanes synthesis catalyzed MNCF-SO3H 
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To further analyze the catalytic performance, 
MNCF-SO₃H was evaluated against previously reported 

catalysts [33-36], with a comparative summary presented 

in Table 3. The results highlight MNCF-SO₃H as a 

highly efficient catalyst for bis(indolyl)methane 
synthesis, delivering excellent product yields within 

significantly shorter reaction times (Table 3, entries 1–
4). Although certain other catalysts also achieve high 

yields, they generally require extended reaction 

durations (Table 3, entry 3), making MNCF-SO₃H a 

more time-efficient alternative. 

 

 
 

We investigated the catalytic synthesis of 3-
aminoimidazo[1,2-a]pyridines by using MNCF-SO₃H 

due to both 3-aminoimidazo-fused heterocyclic 

compounds' significance in research and our ongoing 

methods development. The evaluation of optimal 
reaction conditions started by designing a model reaction 

which combined benzaldehyde (0.20 mmol) with 2-
aminopyridine (0.20 mmol) and cyclohexyl isocyanide 

(0.20 mmol). The researchers tested different reaction 

parameters such as solvent selection and catalyst 

consumption as well as reaction temperature to 
maximize efficiency (Table 4). 

 

 
 
As detailed in Table 4, the optimal reaction 

conditions were established by employing (0.03 g) of 

MNCF-SO₃H in water at 60°C, which resulted in the 

highest yield and the shortest reaction time (Table 4, 
entry 8). To assess the reaction's scope, a diverse set of 

2-amino heterocycles (4), substituted benzaldehydes (5), 

and cyclohexyl isocyanide (6) were examined, as 

summarized in Table 5. Various 2-amino heterocyclic 

compounds, including 2-aminopyridine, 2-amino-6-

methylpyridine, 2-aminobenzothiazole, and 2-amino-5-

methylbenzothiazole were effectively utilized, leading to 
the successful synthesis of 3-aminoimidazo[1,2-

a]pyridines with yields ranging from good to excellent. 
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The catalytic performance of MNCF-SO₃H was 

evaluated against previously reported methods [37-39] 
for the synthesis of 3-aminoimidazo-fused heterocycles, 

focusing on yield, solvent choice, and reaction time. As 

illustrated in Table 6, MNCF-SO₃H demonstrated 

exceptional efficiency, delivering high yields within 
significantly shorter reaction times while utilizing water 

as an environmentally friendly solvent. 

 

Table 6: Comparative Analysis of MNCF-SO₃H with Reported Catalysts Under Various Reaction Conditions 

Entry Catalyst Solvent Time (min) T(oC) Yield (%) Ref 

1 MWCNTs-OSO3H MeOH 40 r.t. 91  

2 Silica sulfuric acid MeOH 180 r.t. 95  

3 Cellulose sulfuric acid MeOH 180 r.t. 94  

4 Fe3O4@SiO2~FLU NPs S.F. 60 60 ˚C 98  

5 [40] MNCF-SO3H Water 40 r.t. 90  

 
The investigation of MNCF-SO₃H recyclability 

occurred throughout every reaction to evaluate its 

operational stability while measuring its efficiency. The 

optimized reactions used model systems under these 
conditions until the catalyst was separated through 

magnetic intervention from reaction mixtures. The 

catalyst received two rounds of acetone (5 mL each) 

wash followed by drying at 60°C before its use in 

subsequent runs. The catalyst showed steady 

productivity throughout multiple cycles as it kept its 
initial high efficiency level even after using it four times 

consistently (Scheme 2). 

 

 
Scheme 2: Reusability of the catalyst in the multicomponent reactions 
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CONCLUSION 
In conclusion, we have developed and 

characterized sulfonated magnetic natural cellulose 

fibers as a durable and eco-friendly biopolymer-based 
solid acid catalyst. The catalytic performance of this 

novel material was demonstrated in two multi-

component reactions, facilitating the efficient synthesis 

of bis(indolyl)methane and 3-aminoimidazo[1,2-
a]pyridine derivatives. These reactions proceeded with 

excellent yields in minimal time while utilizing 

sustainable and green reaction conditions. This catalyst 

system stands out for its cost-effectiveness, recyclability, 
and reusability across multiple cycles without any 

significant loss of activity. Additionally, it offers a 

straightforward and practical approach, featuring simple 

product isolation, mild reaction conditions, and the use 
of non-toxic solvents, making it a promising tool for 

green chemistry applications. 
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