

Review Article

The Scope and Prospects of Toluidine Blue Vital Staining in Diagnosis of Oral Lesions: An Overview

Maheswaran T¹, Giri GVV², Ivin Elsa John³, Sornaa N³, Saranya M⁴, Ilayaraja V^{5*}

¹Professor, Department of Oral Pathology, Adhiparasakthi Dental College and Hospital, Tamil Nadu, India

²Professor and Head, Department of Oral and Maxillofacial Surgery, Adhiparasakthi Dental College and Hospital, Tamil Nadu, India

³Assistant Professor, Department of Oral Medicine and Radiology, Chettinad Dental College & Research Institute, Tamil Nadu, India

⁴Associate Professor, Department of Oral Pathology, Vivekanandha Dental College for Women, Tamil Nadu, India

⁵Professor, Department of Oral Pathology, Vivekanandha Dental College for Women, Tamil Nadu, India

***Corresponding Author:** Ilayaraja V

Professor, Department of Oral Pathology, Vivekanandha Dental College for Women, Tamil Nadu, India

Article History

Received: 27.11.2025

Accepted: 20.01.2026

Published: 22.01.2026

Abstract: Toluidine blue is a valuable adjunctive diagnostic tool for identifying potentially malignant and malignant oral lesions. This metachromatic vital stain demonstrates reliable sensitivity for detecting dysplastic changes through selective binding to nucleic acids in epithelial tissues. Although the specificity varies across studies, toluidine blue significantly enhances the accuracy of clinical examinations in identifying high-risk lesions. Current evidence supports its application in biopsy site selection, surgical margin delineation, and screening. This review synthesizes recent findings on the diagnostic utility of toluidine blue and its potential future applications in oral medicine.

Keywords: Toluidine Blue, Vital Staining, Potentially Malignant Oral Lesion, Oral Cancer.

INTRODUCTION

Oral squamous cell carcinoma remains a significant global health challenge, with particularly high incidence rates in Southeast Asian populations [1]. Early detection of oral potentially malignant disorders substantially improves treatment outcomes and five-year survival rates [2]. Conventional visual examination alone exhibits limited sensitivity and specificity in identifying dysplastic changes, necessitating the use of adjunctive diagnostic aids [3]. Toluidine blue, a thiazine-group vital stain, selectively binds to acidic tissue components, including deoxyribonucleic acid and ribonucleic acid [4]. This metachromatic property enables preferential accumulation in dysplastic epithelium with increased nuclear density [5]. The staining procedure is simple, cost-effective, and requires minimal technical expertise, making it accessible for routine clinical practice [6]. This narrative review provides a concise summary of the staining principles, diagnostic performance, clinical applications, and limitations of toluidine blue vital staining in the diagnosis of oral lesions.

Biological Mechanism and Staining Principles

Toluidine blue is an acidophilic metachromatic dye that exhibits a selective affinity for anionic tissue components [4]. The dye forms ionic bonds with sulfate, phosphate, and carboxylate radicals present in nucleic acids within dysplastic cells [1]. Malignant and premalignant lesions exhibit significantly elevated deoxyribonucleic acid and ribonucleic acid content compared to normal epithelium [5]. Additionally, altered tissue architecture in dysplastic epithelium facilitates enhanced dye penetration into widened intercellular spaces [2]. The standard application protocol involves a preliminary acetic acid rinse for 20 s, followed by toluidine blue application for one minute, and a final acetic acid wash to eliminate mechanically retained stains [6]. Dark royal blue or navy blue staining patterns indicate positive results, whereas pale blue or absent staining suggests benign pathology [7].

Copyright © 2026 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Citation: Maheswaran T, Giri GVV, Ivin Elsa John, Sornaa N, Saranya M, Ilayaraja V (2026). The Scope and Prospects of Toluidine Blue Vital Staining in Diagnosis of Oral Lesions: An Overview. *South Asian Res J Oral Dent Sci*, 8(1), 11-13.

Diagnostic Accuracy and Performance Characteristics

Systematic review evidence demonstrates that toluidine blue exhibits high sensitivity ranging between seventy-seven to ninety-seven percent for detecting oral malignancies [2]. A large-scale Indian study involving one hundred eighty-three patients reported a sensitivity of ninety-two percent and specificity of sixty-eight percent [1]. Meta-analysis findings indicate that the diagnostic odds ratio for toluidine blue staining exceeds seven compared to clinical examination alone [2]. The test demonstrates superior sensitivity for higher-grade dysplastic lesions than for mild dysplasia [8]. Observer agreement studies have revealed substantial inter-observer kappa coefficients exceeding 0.60, indicating good reproducibility [7]. Comparative analyses have shown that toluidine blue outperforms chemiluminescence in detecting potentially malignant disorders [4]. False-positive rates typically range between eight to thirty-seven percent, often attributed to inflammatory conditions and traumatic ulcerations [3].

Clinical Applications and Practical Utility

Toluidine blue serves multiple clinical purposes in oral medicine [9]. Primary applications include guiding optimal biopsy site selection in multifocal lesions, particularly when the clinical appearance provides ambiguous diagnostic information [6]. This technique significantly reduces false-negative biopsy results by identifying representative dysplastic areas within heterogeneous lesions [5]. Intraoperative margin assessment represents another valuable application, with studies reporting a 100 percent negative predictive value for tumor-free margins [10]. Community-based screening programs utilizing toluidine blue have demonstrated increased detection rates of oral submucous fibrosis and premalignant lesions [3]. This method is particularly beneficial for monitoring patients with prior upper aerodigestive tract malignancies at risk for second primary tumors [9]. Cost-effectiveness analyses indicate substantial economic advantages over alternative diagnostic modalities in resource-limited settings [1].

Limitations and Challenges

Several factors limit the universal adoption of toluidine blue staining in clinical practice [3]. False-positive results frequently occur in inflammatory lesions, traumatic ulcerations, and candidiasis, potentially leading to unnecessary biopsies [8]. Observer subjectivity in interpreting pale or dark blue staining patterns introduces variability in diagnostic outcomes [7]. This technique demonstrates reduced sensitivity for detecting mild dysplasia compared to moderate-to-severe dysplastic changes [2]. Some studies have reported false-negative rates approaching 30 percent for early stage premalignant lesions [11]. Standardization challenges exist regarding the staining protocols, interpretation criteria, and optimal waiting periods between application and assessment [3]. The test remains an adjunctive tool rather than a definitive diagnostic method, with histopathological examination maintaining its gold standard status [9].

Comparative Analysis with Alternative Diagnostic Modalities

Contemporary literature has compared toluidine blue with emerging diagnostic technologies, including autofluorescence and chemiluminescence systems [3]. Systematic reviews indicate that toluidine blue demonstrates comparable or superior diagnostic accuracy to chemiluminescence-based devices [4]. Combined approaches utilizing toluidine blue with chemiluminescence yield improved specificity compared with either modality alone [8]. Autofluorescence visualization exhibits higher sensitivity but lower specificity than toluidine blue staining [9]. Brush biopsy combined with toluidine blue staining provides enhanced diagnostic accuracy compared to conventional clinical examination [3]. Cost-benefit analyses favor the implementation of toluidine blue in resource-constrained healthcare settings [1].

Future Prospects and Emerging Applications

Molecular studies suggest that toluidine blue-positive lesions harbor high-risk genetic alterations associated with malignant transformation [11]. Integration with spectroscopic analysis may enable non-contact optical detection systems for oral cancer screening [2]. Artificial intelligence algorithms combined with digital photography of stained lesions can reduce observer variability and enhance diagnostic accuracy [7]. Randomized controlled trials evaluating toluidine blue screening in high-risk populations have demonstrated the potential to reduce oral cancer incidence through early intervention [3]. The development of quantitative colorimetric assessment tools may help standardize interpretation criteria and improve test reproducibility. Telemedicine platforms incorporating toluidine blue staining can expand access to specialist evaluations in underserved communities [5]. Ongoing research is exploring modified toluidine blue formulations with enhanced tissue penetration and reduced false-positive rates [8].

CONCLUSION

Toluidine blue staining is a valuable, cost-effective adjunctive diagnostic tool that enhances the identification of oral potentially malignant disorders and squamous cell carcinomas. Current evidence demonstrates high sensitivity and acceptable specificity when it is integrated with a comprehensive clinical examination. This technique provides substantial benefits for biopsy site selection, surgical margin assessment, and patient surveillance. Dental clinicians should incorporate toluidine blue staining into systematic evaluation protocols for suspicious oral lesions. Future integration with molecular diagnostics and digital technologies promises enhanced diagnostic precision and broader clinical accessibility to patients.

Continued research focusing on standardization, training programs, and prospective longitudinal studies will further establish the role of toluidine blue in contemporary oral medicine practice.

REFERENCES

1. Prajeesh, K. M., & Soni, S. (2019). A Study of Toluidine Blue Staining in Suspected Oral Malignancies in Patients Presenting to Tertiary Care Hospital in Central India. *Indian journal of otolaryngology and head and neck surgery: official publication of the Association of Otolaryngologists of India*, 71(4), 492–497. <https://doi.org/10.1007/s12070-019-01672-4>
2. Kim, D. H., Song, E. A., Kim, S. W., & Hwang, S. H. (2021). Efficacy of toluidine blue in the diagnosis and screening of oral cancer and pre-cancer: A systematic review and meta-analysis. *Clinical otolaryngology: official journal of ENT-UK; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery*, 46(1), 23–30. <https://doi.org/10.1111/coa.13613>
3. Charanya, D., Raghupathy, L. P., Farzana, A. F., Murugan, R., Krishnaraj, R., & Kalarani, G. (2016). Adjunctive aids for the detection of oral premalignancy. *Journal of pharmacy & bioallied sciences*, 8(Suppl 1), S13–S19. <https://doi.org/10.4103/0975-7406.191942>
4. Shukla, A., Singh, N. N., Adsul, S., Kumar, S., Shukla, D., & Sood, A. (2018). Comparative efficacy of chemiluminescence and toluidine blue in the detection of potentially malignant and malignant disorders of the oral cavity. *Journal of oral and maxillofacial pathology: JOMFP*, 22(3), 442. https://doi.org/10.4103/jomfp.JOMFP_261_17
5. Aggarwal, N., Panja, T., Dutta, S., Sinha, R., & Mittal, A. (2022). Evaluation of the Role of Toluidine Blue Paint as an Adjunctive Method to Biopsy in Suspicious Oral Lesion: A Hospital Based Study. *Indian journal of otolaryngology and head and neck surgery: official publication of the Association of Otolaryngologists of India*, 74(Suppl 2), 2458–2465. <https://doi.org/10.1007/s12070-020-02165-5>
6. Parakh, M. K., Jagat Reddy, R. C., & Subramani, P. (2017). Toluidine Blue Staining in Identification of a Biopsy Site in Potentially Malignant Lesions: A Case-control Study. *Asia-Pacific journal of oncology nursing*, 4(4), 356–360. https://doi.org/10.4103/apjon.apjon_38_17
7. Li, Y. N., Lu, R., Zhang, J., & Zhou, G. (2019). Inter-and intra-observer agreement on the judgment of toluidine blue staining for screening of oral potentially malignant disorders and oral cancer. *Clinical oral investigations*, 23(4), 1709–1714. <https://doi.org/10.1007/s00784-018-2595-7>
8. Ghelichli, M., Rajabi, A., Mirsaeedi, N., Mohammadi, M., Sohrabi, S., & Darabi, N. (2024). Accuracy of special histochemical staining methods in diagnosis of oral pathology: A systematic review and meta-analysis. *Dental research journal*, 21, 34.
9. Kim, D. H., Kim, S. W., & Hwang, S. H. (2022). Efficacy of non-invasive diagnostic methods in the diagnosis and screening of oral cancer and precancer. *Brazilian journal of otorhinolaryngology*, 88(6), 937–947. <https://doi.org/10.1016/j.bjorl.2020.12.019>
10. Allegra, E., Bianco, M. R., Mignogna, C., Drago, G. D., Modica, D. M., & Puzzo, L. (2020). Early Glottic Cancer Treated by Transoral Laser Surgery Using Toluidine Blue for the Definition of the Surgical Margins: A Pilot Study. *Medicina (Kaunas, Lithuania)*, 56(7), 334. <https://doi.org/10.3390/medicina56070334>
11. Mills S. (2022). How effective is toluidine blue for screening and diagnosis of oral cancer and premalignant lesions? *Evidence-based dentistry*, 23(1), 34–35. <https://doi.org/10.1038/s41432-022-0239-x>