

Review Article

Indications for Alginate Impression Materials in Modern Dental Practice: An Overview

Maheswaran T^{1*}, Shiamala J², Sivaguru K³, Vishnuvardhan⁴, Pamalai G⁵, Shanmugam R⁶

¹Professor, Department of Oral Pathology, Adhiparasakthi Dental College and Hospital, Tamil Nadu, India

²Consultant Prosthodontist, Oral Safe Dental Clinic, Puducherry, India

³Prosthodontist & Commandant, No. 1 Dental Unit Assam Rifles, Shillong, Meghalaya, India

⁴Assistant Professor, Department of Prosthodontics, KSR Institute of Dental Science and Research, Tamil Nadu, India

⁵Assistant Professor, Department of Dental Surgery, Government Villupuram Medical College, Tamil Nadu, India

⁶Assistant Professor, Department of Prosthodontics, Adhiparasakthi Dental College and Hospital, Tamil Nadu, India

***Corresponding Author:** Maheswaran T

Professor, Department of Oral Pathology, Adhiparasakthi Dental College and Hospital, Tamil Nadu, India

Article History

Received: 09.12.2025

Accepted: 07.02.2026

Published: 10.02.2026

Abstract: Alginate impression materials remain integral to contemporary dental practice despite advancements in digital dentistry. As irreversible hydrocolloids derived from brown algae, these materials are cost-effective, easy to manipulate, patient-tolerable, and have rapid setting characteristics. This review synthesizes the current evidence regarding the clinical applications of alginate in modern dentistry. The primary indications include preliminary impressions for complete and removable prostheses, orthodontic study models, provisional restorations, opposing arch recordings, and fabrication of custom appliances, including sports mouthguards and bleaching trays. Although dimensional stability limitations restrict the use of these materials in definitive fixed prosthodontics, proper handling protocols can enable predictable outcomes in appropriate clinical scenarios. Understanding the material properties, manipulation techniques, and storage requirements optimizes clinical performance and ensures successful treatment outcomes.

Keywords: Alginate, Impression Materials, Study Models, Preliminary Impressions.

1. INTRODUCTION

Hydrocolloid impression materials were among the first elastic materials introduced in dentistry [1]. Alginate, an irreversible hydrocolloid, consists of salts derived from alginic acid, a polysaccharide extracted from brown algae [2]. Despite technological advances in digital impression systems, alginate remains clinically relevant because of its advantageous properties [1]. The material demonstrates superior patient acceptance compared to elastomeric alternatives, which is particularly beneficial for pediatric populations and individuals with heightened gag reflexes [3]. Economic considerations further support alginate utilization, as its material costs remain substantially lower than those of polyvinyl siloxane or polyether alternatives [1, 2]. This review provides a concise summary of the current applications and indications of alginate impression materials in contemporary clinical practice.

2. DIAGNOSTIC AND STUDY MODEL APPLICATIONS

2.1. Orthodontic Treatment Planning

Alginate impressions are the foundation of orthodontic diagnostic records [4]. Research has demonstrated adequate accuracy for orthodontic analysis when impressions are poured promptly [5]. Digital models generated from alginate impressions exhibit reliability comparable to that of traditional stone casts for tooth-width measurements and Bolton analysis [6]. Studies have confirmed that alginate impressions can be digitized using structured-light scanning with clinically acceptable dimensional accuracy [5]. Storage of alginate impressions for orthodontic appliance fabrication

Copyright © 2026 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Citation: Maheswaran T, Shiamala J, Sivaguru K, Vishnuvardhan, Pamalai G, Shanmugam R (2026). Indications for Alginate Impression Materials in Modern Dental Practice: An Overview. *South Asian Res J Oral Dent Sci*, 8(1), 17-20.

demonstrates clinical viability; retainers fabricated from alginate impressions stored for up to 72 h at high humidity maintain acceptable fit characteristics in 90% of cases [7].

2.2. Preliminary Impressions for Prosthodontics

Alginate is an effective preliminary impression material for complete denture fabrication [1]. Conventional denture protocols utilize alginate in stock trays for anatomical impressions, followed by elastomeric materials in custom trays for definitive impressions [8]. Randomized controlled trials comparing impression methods have revealed that complete dentures fabricated using alginate preliminary impressions followed by silicone final impressions generate higher patient satisfaction scores than simplified alginate-only techniques [9]. Viscosity variations in alginate formulations influence recording success rates, particularly in the mylohyoid ridge and retromolar pad areas [10]. General dental practitioners favor alginate for primary impressions in 75% of complete-denture cases [11].

2.3. Provisional and Interim Restoration Fabrication

Alginate impressions facilitate provisional crown and bridge construction using multiple techniques [1]. The material enables the capture of preoperative anatomy for fabricating temporary restorations using direct or indirect methods [2]. For fixed partial dentures, practitioners use alginate impressions to create matrices for provisional resin placement [1]. Research indicates that alginate can serve as a final impression material for indirect restorations when the preparation margins are chamfered; however, this application remains limited [12]. Alginate's utility extends to opposing arch impressions, where accurate opposing occlusion recording is essential for preventing high points on indirect restorations [2].

3. CUSTOM APPLIANCE FABRICATION

3.1. Sports Mouthguards

Custom-fitted sports mouthguards fabricated from alginate impressions demonstrate superior protective capabilities compared with stock or boil-and-bite alternatives [13]. Professional guidelines recommend custom mouthguards fabricated by dental professionals to minimize sports-related orofacial injury [14]. The alginate impression-based fabrication process involves obtaining accurate dental arch recordings, pouring stone models, and vacuum-forming ethylene-vinyl acetate sheets over the casts [15]. Studies have demonstrated that alginate impressions provide adequate detail reproduction for mouthguard construction while maintaining patient comfort during impression procedures [3].

3.2. Bleaching Trays and Occlusal Appliances

Alginate impressions enable the fabrication of custom bleaching trays and occlusal splints [1]. Investigations have demonstrated that properly handled alginate impressions can be double-poured to produce two accurate casts when kept moist during stone setting and repoured within 45 min. This technique is economically beneficial for producing baseline and modified casts for diagnostic purposes [16]. The fabrication of occlusal splints and night guards from alginate-derived models represents a cost-effective approach for managing bruxism and temporomandibular disorders [1].

4. MATERIAL PROPERTIES AND CLINICAL CONSIDERATIONS

4.1. Material Properties

A summary of the properties of alginate impression materials and their clinical significance is provided in Table 1.

Table 1: The properties and clinical significance of alginate impression material

Property	Clinical Significance	Evidence
Dimensional Stability	Shrinkage occurs post-gelation; immediate pouring recommended	Extended-pour alginates maintain accuracy up to 5 days with proper storage [17]
Detail Reproduction	Adequate for most applications except definitive fixed prosthodontics	Hydrophilic nature facilitates recording in presence of saliva [2]
Tear Strength	Lower than elastomeric materials; limits use in undercut areas	Poor tensile strength contraindicates use for permanent crown/bridge impressions [1]
Setting Time	Fast-set (1-2 min) and normal-set (2-4.5 min) formulations available	Operator can select based on clinical situation [18]
Disinfection	Compatible with spray or immersion techniques	Dimensional changes with disinfection typically <1mm, clinically insignificant [19]

4.2. Storage and Handling Protocols

The dimensional accuracy critically depends on the storage conditions and pouring time [20]. Conventional alginates should be poured within 10-30 minutes to minimize distortion [21]. Extended-pour formulations maintain dimensional stability for 5 days when stored in sealed plastic bags at 100% humidity [22]. Temperature significantly affects dimensional changes, with storage at 30°C demonstrating superior accuracy compared to 40°C [23]. The mixing technique

influences the mechanical properties; automatic mixing devices produce more consistent results than manual spatulation [4].

4.3. Accuracy Considerations

Paste-type alginate formulations demonstrate higher dynamic viscosity and shorter gelation times than powder-type materials, with superior surface quality when combined with type III dental stone [24]. Studies evaluating dimensional accuracy have reported mean differences between alginate-derived casts and master models ranging from 0.003 to 0.005 inches (76-127 μ m) when proper protocols are followed [16]. The compatibility with dental stones varies among alginate brands, necessitating appropriate material selection [24].

5. CONCLUSION

Alginate impression materials are clinically relevant in contemporary dental practice for specific indications. Optimal applications include orthodontic study models, preliminary impressions for removable prostheses, provisional restorations, opposing arch recordings, and custom appliance fabrication. Clinicians must recognize the limitations of dimensional stability and adhere to proper handling protocols, including immediate pouring or appropriate storage conditions. Understanding the material properties and technique-sensitive factors enables predictable clinical outcomes for cost-effective, patient-friendly impression procedures.

REFERENCES

1. Cervino, G., Fiorillo, L., Herford, A. S., Laino, L., Troiano, G., Amoroso, G., Crimi, S., Matarese, M., D'Amico, C., Nastro Siniscalchi, E., & Cicciù, M. (2018). Alginate Materials and Dental Impression Technique: A Current State of the Art and Application to Dental Practice. *Marine drugs*, 17(1), 18. <https://doi.org/10.3390/md17010018>
2. Nandini, V. V., Venkatesh, K. V., & Nair, K. C. (2008). Alginate impressions: A practical perspective. *Journal of conservative dentistry: JCD*, 11(1), 37–41. <https://doi.org/10.4103/0972-0707.43416>
3. Rolfsen, C. C., Fidel, P. L., Wen, Z., Chapple, A., Ahluwalia, J. P., DiVittorio, A., Ballard, R. W., & Johnson, J. T. (2023). Direct Comparison Between Intraoral Scanning and Alginate Impressions for Pediatric Patients: An *In Vitro* Study. *Journal of dentistry for children (Chicago, Ill.)*, 90(1), 17–21.
4. Dreesen, K., Kellens, A., Wevers, M., Thilakarathne, P. J., & Willems, G. (2013). The influence of mixing methods and disinfectant on the physical properties of alginate impression materials. *European journal of orthodontics*, 35(3), 381–387. <https://doi.org/10.1093/ejo/cjs031>
5. Vogel, A. B., Kilic, F., Schmidt, F., Rübel, S., & Lapatki, B. G. (2015). Dimensional accuracy of jaw scans performed on alginate impressions or stone models: A practice-oriented study. *Journal of orofacial orthopedics = Fortschritte der Kieferorthopadie: Organ/official journal Deutsche Gesellschaft für Kieferorthopadie*, 76(4), 351–365. <https://doi.org/10.1007/s00056-015-0296-2>
6. Wiranto, M. G., Engelbrecht, W. P., Tutein Nolthenius, H. E., van der Meer, W. J., & Ren, Y. (2013). Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions. *American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics*, 143(1), 140–147. <https://doi.org/10.1016/j.ajodo.2012.06.018>
7. Douglass, J. B., White, J. G., & Mitchell, R. J. (1990). Clinical acceptability of orthodontic retainers fabricated from stored alginate impressions. *American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics*, 97(2), 93–97. [https://doi.org/10.1016/0889-5406\(90\)70080-V](https://doi.org/10.1016/0889-5406(90)70080-V)
8. Komagamine, Y., Kanazawa, M., Sato, Y., Iwaki, M., Jo, A., & Minakuchi, S. (2019). Masticatory performance of different impression methods for complete denture fabrication: A randomized controlled trial. *Journal of dentistry*, 83, 7–11. <https://doi.org/10.1016/j.jdent.2019.01.009>
9. Jo, A., Kanazawa, M., Sato, Y., Iwaki, M., Akiba, N., & Minakuchi, S. (2015). A randomized controlled trial of the different impression methods for the complete denture fabrication: Patient reported outcomes. *Journal of dentistry*, 43(8), 989–996. <https://doi.org/10.1016/j.jdent.2015.05.007>
10. Aoyama, N., Akiba, N., & Uchida, T. (2007). *Kokubyo Gakkai zasshi. The Journal of the Stomatological Society, Japan*, 73(3)-74(1), 33–36. <https://doi.org/10.5357/koubyou.73and74.33>
11. Vohra, F., Rashid, H., Hanif, A., Ghani, S. M., & Najeeb, S. (2015). TRENDS IN COMPLETE DENTURE IMPRESSIONS IN PAKISTAN. *Journal of Ayub Medical College, Abbottabad: JAMC*, 27(1), 108–112.
12. Eriksson, A., Ockert-Eriksson, G., Lockowandt, P., & Lindén, L. A. (1996). Irreversible hydrocolloids for crown and bridge impressions: effect of different treatments on compatibility of irreversible hydrocolloid impression material with type IV gypsums. *Dental materials: official publication of the Academy of Dental Materials*, 12(2), 74–82. [https://doi.org/10.1016/S0109-5641\(96\)80072-8](https://doi.org/10.1016/S0109-5641(96)80072-8)
13. ADA Council on Access, Prevention and Interprofessional Relations, & ADA Council on Scientific Affairs (2006). Using mouthguards to reduce the incidence and severity of sports-related oral injuries. *Journal of the American Dental Association (1939)*, 137(12), 1712–1731. <https://doi.org/10.14219/jada.archive.2006.0118>

14. Avgerinos, S., Stamos, A., Nanussi, A., Engels-Deutsch, M., Cantamessa, S., Darteville, J. L., Unamuno, E., Del Grosso, F., Fritsch, T., Crouzette, T., Striegel, M., Sánchez, C. C., Okshah, A., Tzimpoulas, N., Naka, O., Kouveliotis, G., Tzoutzas, I., Zoidis, P., Synodinos, F., Loizos, E., ... Rahiotis, C. (2025). Position Statement and Recommendations for Custom-Made Sport Mouthguards. *Dental traumatology: official publication of International Association for Dental Traumatology*, 41(3), 246–251. <https://doi.org/10.1111/edt.13019>
15. Hayashi, H., Naiki, Y., Murakami, M., Oishi, A., Takeuchi, R., Nakagawa, M., Kimoto, S., Hasegawa, Y., & Araki, A. (2022). Effects of cleaning sports mouthguards with ethylene-vinyl acetate on oral bacteria. *PeerJ*, 10, e14480. <https://doi.org/10.7717/peerj.14480>
16. Haywood, V. B., & Powe, A. (1998). Using double-poured alginate impressions to fabricate bleaching trays. *Operative dentistry*, 23(3), 128–131.
17. Imbery, T. A., Nehring, J., Janus, C., & Moon, P. C. (2010). Accuracy and dimensional stability of extended-pour and conventional alginate impression materials. *Journal of the American Dental Association (1939)*, 141(1), 32–39. <https://doi.org/10.14219/jada.archive.2010.0018>
18. Nallamuthu, N. A., Braden, M., & Patel, M. P. (2012). Some aspects of the formulation of alginate dental impression materials--setting characteristics and mechanical properties. *Dental materials : official publication of the Academy of Dental Materials*, 28(7), 756–762. <https://doi.org/10.1016/j.dental.2012.03.012>
19. Durr, D. P., & Novak, E. V. (1987). Dimensional stability of alginate impressions immersed in disinfecting solutions. *ASDC journal of dentistry for children*, 54(1), 45–48.
20. Rohanian, A., Ommati Shabestari, G., Zeighami, S., Samadi, M. J., & Shamshiri, A. R. (2014). Effect of storage time of extended-pour and conventional alginate impressions on dimensional accuracy of casts. *Journal of dentistry (Tehran, Iran)*, 11(6), 655–664.
21. Shaba, O. P., Adegbulugbe, I. C., & Oderinu, O. H. (2007). Dimensional stability of alginate impression material over a four hours time frame. *Nigerian quarterly journal of hospital medicine*, 17(1), 1–4. <https://doi.org/10.4314/nqjhm.v17i1.12531>
22. Walker, M. P., Burckhard, J., Mitts, D. A., & Williams, K. B. (2010). Dimensional change over time of extended-storage alginate impression materials. *The Angle orthodontist*, 80(6), 1110–1115. <https://doi.org/10.2319/031510-150.1>
23. Kulkarni, M. M., & Thombare, R. U. (2015). Dimensional Changes of Alginate Dental Impression Materials-An Invitro Study. *Journal of clinical and diagnostic research: JCDR*, 9(8), ZC98–ZC102. <https://doi.org/10.7860/JCDR/2015/13627.6407>
24. Murata, H., Kawamura, M., Hamada, T., Chimori, H., & Nikawa, H. (2004). Physical properties and compatibility with dental stones of current alginate impression materials. *Journal of oral rehabilitation*, 31(11), 1115–1122. <https://doi.org/10.1111/j.1365-2842.2004.01343.x>